fenic.api.functions
Functions for working with DataFrame columns.
Note: Array functions are available via fc.arr.* namespace (e.g., fc.arr.size()).
Functions:
-
approx_count_distinct–Aggregate function: returns an approximate count (HyperLogLog++) of distinct non-null values.
-
array_agg–Alias for collect_list().
-
asc–Mark this column for ascending sort order with nulls first.
-
asc_nulls_first–Alias for asc().
-
asc_nulls_last–Mark this column for ascending sort order with nulls last.
-
async_udf–A decorator for creating async user-defined functions (UDFs) with configurable concurrency and retries.
-
avg–Aggregate function: returns the average (mean) of all values in the specified column. Applies to numeric and embedding types.
-
coalesce–Returns the first non-null value from the given columns for each row.
-
col–Creates a Column expression referencing a column in the DataFrame.
-
collect_list–Aggregate function: collects all values from the specified column into a list.
-
count–Aggregate function: returns the count of non-null values in the specified column.
-
count_distinct–Aggregate function: returns the number of distinct non-null rows across one or more columns.
-
desc–Mark this column for descending sort order with nulls first.
-
desc_nulls_first–Alias for desc().
-
desc_nulls_last–Mark this column for descending sort order with nulls last.
-
empty–Creates a Column expression representing an empty value of the given type.
-
first–Aggregate function: returns the first non-null value in the specified column.
-
flatten–Flattens an array of arrays into a single array (one level deep).
-
greatest–Returns the greatest value from the given columns for each row.
-
least–Returns the least value from the given columns for each row.
-
lit–Creates a Column expression representing a literal value.
-
max–Aggregate function: returns the maximum value in the specified column.
-
mean–Aggregate function: returns the mean (average) of all values in the specified column.
-
min–Aggregate function: returns the minimum value in the specified column.
-
null–Creates a Column expression representing a null value of the specified data type.
-
stddev–Aggregate function: returns the sample standard deviation of the specified column.
-
struct–Creates a new struct column from multiple input columns.
-
sum–Aggregate function: returns the sum of all values in the specified column.
-
sum_distinct–Aggregate function: returns the sum of distinct numeric values in the specified column.
-
tool_param–Creates an unresolved literal placeholder column with a declared data type.
-
udf–A decorator or function for creating user-defined functions (UDFs) that can be applied to DataFrame rows.
-
when–Evaluates a conditional expression (like if-then).
approx_count_distinct
approx_count_distinct(column: ColumnOrName) -> Column
Aggregate function: returns an approximate count (HyperLogLog++) of distinct non-null values.
Parameters:
-
column(ColumnOrName) –Column or column name to approximately count distinct values in. Cannot be a StructType column.
Returns:
-
Column–A Column expression representing the approximate count-distinct aggregation
Note
Differs from the pyspark implementation in that the relative standard deviation is not configurable.
Approximate distinct count per group
# Sample input
df = session.create_dataframe({
"k": ["a", "a", "b", "b", "b"],
"v": [1, None, 1, 2, 3],
})
df.group_by(fc.col("k")).agg(
fc.approx_count_distinct(fc.col("v")).alias("approx_unique_v")
).show()
# Output:
# +---+------------------+
# | k | approx_unique_v |
# +---+------------------+
# | a | 1 |
# | b | 3 |
# +---+------------------+
Nulls are ignored in approximate distinct counts
df = session.create_dataframe({"k": ["x", "x"], "v": [None, 3]})
df.group_by(fc.col("k")).agg(fc.approx_count_distinct(fc.col("v")).alias("acd")).show()
# Output:
# +---+-----+
# | k | acd |
# +---+-----+
# | x | 1 |
# +---+-----+
Raises:
-
TypeMismatchError–If column is a StructType or ArrayType
column.
Source code in src/fenic/api/functions/builtin.py
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 | |
array_agg
array_agg(column: ColumnOrName) -> Column
Alias for collect_list().
Source code in src/fenic/api/functions/builtin.py
348 349 350 351 | |
asc
asc(column: ColumnOrName) -> Column
Mark this column for ascending sort order with nulls first.
Parameters:
-
column(ColumnOrName) –The column to apply the ascending ordering to.
Returns:
-
Column–A sort expression with ascending order and nulls first.
Source code in src/fenic/api/functions/builtin.py
603 604 605 606 607 608 609 610 611 612 613 | |
asc_nulls_first
asc_nulls_first(column: ColumnOrName) -> Column
Alias for asc().
Parameters:
-
column(ColumnOrName) –The column to apply the ascending ordering to.
Returns:
-
Column–A sort expression with ascending order and nulls first.
Source code in src/fenic/api/functions/builtin.py
616 617 618 619 620 621 622 623 624 625 626 | |
asc_nulls_last
asc_nulls_last(column: ColumnOrName) -> Column
Mark this column for ascending sort order with nulls last.
Parameters:
-
column(ColumnOrName) –The column to apply the ascending ordering to.
Returns:
-
Column–A Column expression representing the column and the ascending sort order with nulls last.
Source code in src/fenic/api/functions/builtin.py
629 630 631 632 633 634 635 636 637 638 639 | |
async_udf
async_udf(f: Optional[Callable[..., Awaitable[Any]]] = None, *, return_type: DataType, max_concurrency: int = 10, timeout_seconds: float = 30, num_retries: int = 0)
A decorator for creating async user-defined functions (UDFs) with configurable concurrency and retries.
Async UDFs allow IO-bound operations (API calls, database queries, MCP tool calls) to be executed concurrently while maintaining DataFrame semantics.
Parameters:
-
f(Optional[Callable[..., Awaitable[Any]]], default:None) –Async function to convert to UDF
-
return_type(DataType) –Expected return type of the UDF. Required parameter.
-
max_concurrency(int, default:10) –Maximum number of concurrent executions (default: 10)
-
timeout_seconds(float, default:30) –Per-item timeout in seconds (default: 30)
-
num_retries(int, default:0) –Number of retries for failed items (default: 0)
Basic async UDF
```python @async_udf(return_type=IntegerType) async def slow_add(x: int, y: int) -> int: await asyncio.sleep(1) return x + y
df = df.select(slow_add(fc.col("x"), fc.col("y")).alias("slow_sum"))
Or
async def slow_add_fn(x: int, y: int) -> int: await asyncio.sleep(1) return x + y
slow_add = async_udf( slow_add_fn, return_type=IntegerType )
```
Example: API call with custom concurrency and retries
python
@async_udf(
return_type=StructType([
StructField("status", IntegerType),
StructField("data", StringType)
]),
max_concurrency=20,
timeout_seconds=5,
num_retries=2
)
async def fetch_data(id: str) -> dict:
async with aiohttp.ClientSession() as session:
async with session.get(f"https://api.example.com/{id}") as resp:
return {
"status": resp.status,
"data": await resp.text()
}
Note: - Individual failures return None instead of raising exceptions - Async UDFs should not block or do CPU-intensive work, as they will block execution of other instances of the function call.
Source code in src/fenic/api/functions/builtin.py
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 | |
avg
avg(column: ColumnOrName) -> Column
Aggregate function: returns the average (mean) of all values in the specified column. Applies to numeric and embedding types.
Parameters:
-
column(ColumnOrName) –Column or column name to compute the average of
Returns:
-
Column–A Column expression representing the average aggregation
Raises:
-
TypeError–If column is not a Column or string
Source code in src/fenic/api/functions/builtin.py
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 | |
coalesce
coalesce(*cols: ColumnOrName) -> Column
Returns the first non-null value from the given columns for each row.
This function mimics the behavior of SQL's COALESCE function. It evaluates the input columns in order and returns the first non-null value encountered. If all values are null, returns null.
Parameters:
-
*cols(ColumnOrName, default:()) –Column expressions or column names to evaluate. Each argument should be a single column expression or column name string.
Returns:
-
Column–A Column expression containing the first non-null value from the input columns.
Raises:
-
ValidationError–If no columns are provided.
coalesce usage
df.select(coalesce("col1", "col2", "col3"))
Source code in src/fenic/api/functions/builtin.py
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 | |
col
col(col_name: str) -> Column
Creates a Column expression referencing a column in the DataFrame.
Parameters:
-
col_name(str) –Name of the column to reference
Returns:
-
Column–A Column expression for the specified column
Raises:
-
TypeError–If colName is not a string
Source code in src/fenic/api/functions/core.py
17 18 19 20 21 22 23 24 25 26 27 28 29 30 | |
collect_list
collect_list(column: ColumnOrName) -> Column
Aggregate function: collects all values from the specified column into a list.
Parameters:
-
column(ColumnOrName) –Column or column name to collect values from
Returns:
-
Column–A Column expression representing the list aggregation
Raises:
-
TypeError–If column is not a Column or string
Source code in src/fenic/api/functions/builtin.py
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 | |
count
count(column: ColumnOrName) -> Column
Aggregate function: returns the count of non-null values in the specified column.
Parameters:
-
column(ColumnOrName) –Column or column name to count values in
Returns:
-
Column–A Column expression representing the count aggregation
Raises:
-
TypeError–If column is not a Column or string
Source code in src/fenic/api/functions/builtin.py
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 | |
count_distinct
count_distinct(*cols: ColumnOrName) -> Column
Aggregate function: returns the number of distinct non-null rows across one or more columns.
Behavior: Any row where one or more inputs is null is ignored.
Parameters:
-
*cols(ColumnOrName, default:()) –One or more columns or column names to include in the distinct count.
Returns:
-
Column–A Column expression representing the count-distinct aggregation over the provided columns.
Distinct count per group (single column)
# Sample input
df = session.create_dataframe({
"k": ["a", "a", "b", "b"],
"v": [1, None, 2, 2],
})
df.group_by(fc.col("k")).agg(
fc.count_distinct(fc.col("v")).alias("num_unique_v")
).show()
# Output:
# +---+--------------+
# | k | num_unique_v |
# +---+--------------+
# | a | 1 |
# | b | 1 |
# +---+--------------+
Distinct count across multiple columns (whole DataFrame)
# Sample input
df = session.create_dataframe({
"a": [1, 1, 2, 2, None],
"b": ["x", "x", "y", "y", "z"],
})
df.agg(
fc.count_distinct(fc.col("a"), fc.col("b")).alias("num_unique_pairs")
).show()
# Output:
# +------------------+
# | num_unique_pairs |
# +------------------+
# | 2 |
# +------------------+
Nulls in any input column are ignored for multi-column distinct
df = session.create_dataframe({"a": [1, 1, None], "b": [1, 2, 1]})
df.agg(fc.count_distinct(fc.col("a"), fc.col("b")).alias("cd")).show()
# Output:
# +----+
# | cd |
# +----+
# | 2 |
# +----+
Raises:
-
ValidationError–If no columns are provided.
-
TypeMismatchError–If a column has an unsupported type
Source code in src/fenic/api/functions/builtin.py
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 | |
desc
desc(column: ColumnOrName) -> Column
Mark this column for descending sort order with nulls first.
Parameters:
-
column(ColumnOrName) –The column to apply the descending ordering to.
Returns:
-
Column–A sort expression with descending order and nulls first.
Source code in src/fenic/api/functions/builtin.py
642 643 644 645 646 647 648 649 650 651 652 | |
desc_nulls_first
desc_nulls_first(column: ColumnOrName) -> Column
Alias for desc().
Parameters:
-
column(ColumnOrName) –The column to apply the descending ordering to.
Returns:
-
Column–A sort expression with descending order and nulls first.
Source code in src/fenic/api/functions/builtin.py
655 656 657 658 659 660 661 662 663 664 665 | |
desc_nulls_last
desc_nulls_last(column: ColumnOrName) -> Column
Mark this column for descending sort order with nulls last.
Parameters:
-
column(ColumnOrName) –The column to apply the descending ordering to.
Returns:
-
Column–A sort expression with descending order and nulls last.
Source code in src/fenic/api/functions/builtin.py
668 669 670 671 672 673 674 675 676 677 678 | |
empty
empty(data_type: DataType) -> Column
Creates a Column expression representing an empty value of the given type.
- If the data type is
ArrayType(...), the empty value will be an empty array. - If the data type is
StructType(...), the empty value will be an instance of the struct type with all fields set toNone. - For all other data types, the empty value is None (equivalent to calling
null(data_type))
This function is useful for creating columns with empty values of a particular type.
Parameters:
-
data_type(DataType) –The data type of the empty value
Returns:
-
Column–A Column expression representing the empty value
Raises:
-
ValidationError–If the data type is not a valid data type
Creating a column with an empty array type
# The newly created `b` column will have a value of `[]` for all rows
df.select(fc.col("a"), fc.empty(fc.ArrayType(fc.IntegerType)).alias("b"))
Creating a column with an empty struct type
# The newly created `b` column will have a value of `{b: None}` for all rows
df.select(fc.col("a"), fc.empty(fc.StructType([fc.StructField("b", fc.IntegerType)])).alias("b"))
Creating a column with an empty primitive type
# The newly created `b` column will have a value of `None` for all rows
df.select(fc.col("a"), fc.empty(fc.IntegerType).alias("b"))
Source code in src/fenic/api/functions/core.py
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 | |
first
first(column: ColumnOrName) -> Column
Aggregate function: returns the first non-null value in the specified column.
Typically used in aggregations to select the first observed value per group.
Parameters:
-
column(ColumnOrName) –Column or column name.
Returns:
-
Column–Column expression for the first value.
Source code in src/fenic/api/functions/builtin.py
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 | |
flatten
flatten(column: ColumnOrName) -> Column
Flattens an array of arrays into a single array (one level deep).
Flattens nested arrays by concatenating all inner arrays into a single array. Only flattens one level of nesting. Returns null if the input is null.
Parameters:
-
column(ColumnOrName) –Column or column name containing arrays of arrays.
Returns:
-
Column–A Column with flattened arrays (one level deep).
Flattening nested arrays
import fenic as fc
df = fc.Session.local().create_dataframe({
"nested": [[[1, 2], [3, 4]], [[5], [6, 7, 8]], None]
})
result = df.select(fc.flatten("nested").alias("flat"))
# Output:
# ┌──────────────────┐
# │ flat │
# ├──────────────────┤
# │ [1, 2, 3, 4] │
# │ [5, 6, 7, 8] │
# │ null │
# └──────────────────┘
One level only
# Deeply nested arrays - only flattens one level
df = fc.Session.local().create_dataframe({
"deep": [[[[1]], [[2]]], [[[3]]]]
})
result = df.select(fc.flatten("deep"))
# Output: [[[1], [2]], [[3]]] # Still nested after one level
Source code in src/fenic/api/functions/builtin.py
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 | |
greatest
greatest(*cols: ColumnOrName) -> Column
Returns the greatest value from the given columns for each row.
This function mimics the behavior of SQL's GREATEST function. It evaluates the input columns in order and returns the greatest value encountered. If all values are null, returns null.
All arguments must be of the same primitive type (e.g., StringType, BooleanType, FloatType, IntegerType, etc).
Parameters:
-
*cols(ColumnOrName, default:()) –Column expressions or column names to evaluate. Each argument should be a single column expression or column name string.
Returns:
-
Column–A Column expression containing the greatest value from the input columns.
Raises:
-
ValidationError–If fewer than two columns are provided.
greatest usage
df.select(fc.greatest("col1", "col2", "col3"))
Source code in src/fenic/api/functions/builtin.py
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 | |
least
least(*cols: ColumnOrName) -> Column
Returns the least value from the given columns for each row.
This function mimics the behavior of SQL's LEAST function. It evaluates the input columns in order and returns the least value encountered. If all values are null, returns null.
All arguments must be of the same primitive type (e.g., StringType, BooleanType, FloatType, IntegerType, etc).
Parameters:
-
*cols(ColumnOrName, default:()) –Column expressions or column names to evaluate. Each argument should be a single column expression or column name string.
Returns:
-
Column–A Column expression containing the least value from the input columns.
Raises:
-
ValidationError–If fewer than two columns are provided.
least usage
df.select(fc.least("col1", "col2", "col3"))
Source code in src/fenic/api/functions/builtin.py
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 | |
lit
lit(value: Any) -> Column
Creates a Column expression representing a literal value.
Column Data Type must be inferrable from the value
- Cannot be used to create a columm with the literal value
None. Usenull(data_type)instead. - Cannot be used to create a columm with the literal value
[]. Useempty(ArrayType(...))instead. - Cannot be used to create a columm with the literal value
{}. Useempty(StructType(...))instead.
Parameters:
-
value(Any) –The literal value to create a column for
Returns:
-
Column–A Column expression representing the literal value
Raises: ValidationError: If the type of the value cannot be inferred
Source code in src/fenic/api/functions/core.py
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 | |
max
max(column: ColumnOrName) -> Column
Aggregate function: returns the maximum value in the specified column.
Parameters:
-
column(ColumnOrName) –Column or column name to compute the maximum of
Returns:
-
Column–A Column expression representing the maximum aggregation
Raises:
-
TypeError–If column is not a Column or string
Source code in src/fenic/api/functions/builtin.py
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 | |
mean
mean(column: ColumnOrName) -> Column
Aggregate function: returns the mean (average) of all values in the specified column.
Alias for avg().
Parameters:
-
column(ColumnOrName) –Column or column name to compute the mean of
Returns:
-
Column–A Column expression representing the mean aggregation
Raises:
-
TypeError–If column is not a Column or string
Source code in src/fenic/api/functions/builtin.py
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 | |
min
min(column: ColumnOrName) -> Column
Aggregate function: returns the minimum value in the specified column.
Parameters:
-
column(ColumnOrName) –Column or column name to compute the minimum of
Returns:
-
Column–A Column expression representing the minimum aggregation
Raises:
-
TypeError–If column is not a Column or string
Source code in src/fenic/api/functions/builtin.py
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 | |
null
null(data_type: DataType) -> Column
Creates a Column expression representing a null value of the specified data type.
Regardless of the data type, the column will contain a null (None) value. This function is useful for creating columns with null values of a particular type.
Parameters:
-
data_type(DataType) –The data type of the null value
Returns:
-
Column–A Column expression representing the null value
Raises:
-
ValidationError–If the data type is not a valid data type
Creating a column with a null value of a primitive type
# The newly created `b` column will have a value of `None` for all rows
df.select(fc.col("a"), fc.null(fc.IntegerType).alias("b"))
Creating a column with a null value of an array/struct type
# The newly created `b` and `c` columns will have a value of `None` for all rows
df.select(
fc.col("a"),
fc.null(fc.ArrayType(fc.IntegerType)).alias("b"),
fc.null(fc.StructType([fc.StructField("b", fc.IntegerType)])).alias("c"),
)
Source code in src/fenic/api/functions/core.py
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 | |
stddev
stddev(column: ColumnOrName) -> Column
Aggregate function: returns the sample standard deviation of the specified column.
Parameters:
-
column(ColumnOrName) –Column or column name.
Returns:
-
Column–Column expression for sample standard deviation.
Source code in src/fenic/api/functions/builtin.py
369 370 371 372 373 374 375 376 377 378 379 380 381 | |
struct
struct(*args: Union[ColumnOrName, List[ColumnOrName], Tuple[ColumnOrName, ...]]) -> Column
Creates a new struct column from multiple input columns.
Parameters:
-
*args(Union[ColumnOrName, List[ColumnOrName], Tuple[ColumnOrName, ...]], default:()) –Columns or column names to combine into a struct. Can be:
- Individual arguments
- Lists of columns/column names
- Tuples of columns/column names
Returns:
-
Column–A Column expression representing a struct containing the input columns
Raises:
-
TypeError–If any argument is not a Column, string, or collection of Columns/strings
Source code in src/fenic/api/functions/builtin.py
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 | |
sum
sum(column: ColumnOrName) -> Column
Aggregate function: returns the sum of all values in the specified column.
Parameters:
-
column(ColumnOrName) –Column or column name to compute the sum of
Returns:
-
Column–A Column expression representing the sum aggregation
Raises:
-
TypeError–If column is not a Column or string
Source code in src/fenic/api/functions/builtin.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 | |
sum_distinct
sum_distinct(column: ColumnOrName) -> Column
Aggregate function: returns the sum of distinct numeric values in the specified column.
Parameters:
-
column(ColumnOrName) –Column or column name to compute the sum of distinct values
Returns:
-
Column–A Column expression representing the sum-distinct aggregation
Sum of distinct values per group
# Sample input
df = session.create_dataframe({
"k": ["a", "a", "b", "b"],
"v": [1, None, 2, 2],
})
# Sum distinct values of column `v` within each group `k`
df.group_by(fc.col("k")).agg(
fc.sum_distinct(fc.col("v")).alias("sum_distinct_v")
).show()
# Output:
# +---+----------------+
# | k | sum_distinct_v |
# +---+----------------+
# | a | 1 |
# | b | 2 |
# +---+----------------+
Nulls are ignored when summing distinct values
df = session.create_dataframe({"k": ["x", "x"], "v": [None, 3]})
df.group_by(fc.col("k")).agg(fc.sum_distinct(fc.col("v")).alias("sd")).show()
# Output:
# +---+----+
# | k | sd |
# +---+----+
# | x | 3 |
# +---+----+
Raises:
-
TypeMismatchError–If column is not a numeric or boolean type
Source code in src/fenic/api/functions/builtin.py
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 | |
tool_param
tool_param(parameter_name: str, data_type: DataType) -> Column
Creates an unresolved literal placeholder column with a declared data type.
A placeholder argument for a DataFrame, representing a literal value to be provided at execution time. If no value is supplied, it defaults to null. Enables parameterized views and macros over fenic DataFrames.
Notes
Supports only Primitive/Object/ArrayLike Types (StringType, IntegerType, FloatType, DoubleType, BooleanType, StructType, ArrayType)
Parameters:
-
parameter_name(str) –The name of the parameter to reference.
-
data_type(DataType) –The expected data type for the parameter value.
Returns:
-
Column–A Column wrapping an UnresolvedLiteralExpr for the given parameter.
A simple tool with one parameter
```python
Assume we are reading data with a name column.
df = session.read.csv(data.csv) parameterized_df = df.filter(fc.col("name").contains(fc.tool_param('query', StringType))) ... session.catalog.create_tool( tool_name="my_tool", tool_description="A tool that searches the name field", tool_query=parameterized_df, result_limit=100, tool_params=[ToolParam(name="query", description="The name should contain the following value")] )
A tool with multiple filters
```python
Assume we are reading data with an age column.
df = session.read.csv(users.csv)
create multiple filters that evaluate to true if a param is not passed.
optional_min = fc.coalesce(fc.col("age") >= tool_param("min_age", IntegerType), fc.lit(True)) optional_max = fc.coalesce(fc.col("age") <= tool_param("max_age", IntegerType), fc.lit(True)) core_filter = df.filter(optional_min & optional_max) session.catalog.create_tool( "users_filter", "Filter users by age", core_filter, tool_params=[ ToolParam(name="min_age", description="Minimum age", has_default=True, default_value=None), ToolParam(name="max_age", description="Maximum age", has_default=True, default_value=None), ] )
Source code in src/fenic/api/functions/core.py
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 | |
udf
udf(f: Optional[Callable] = None, *, return_type: DataType)
A decorator or function for creating user-defined functions (UDFs) that can be applied to DataFrame rows.
Warning
UDFs cannot be serialized and are not supported in cloud execution. User-defined functions contain arbitrary Python code that cannot be transmitted to remote workers. For cloud compatibility, use built-in fenic functions instead.
When applied, UDFs will:
- Access StructType columns as Python dictionaries (dict[str, Any]).
- Access ArrayType columns as Python lists (list[Any]).
- Access primitive types (e.g., int, float, str) as their respective Python types.
Parameters:
-
f(Optional[Callable], default:None) –Python function to convert to UDF
-
return_type(DataType) –Expected return type of the UDF. Required parameter.
UDF with primitive types
# UDF with primitive types
@udf(return_type=IntegerType)
def add_one(x: int):
return x + 1
# Or
add_one = udf(lambda x: x + 1, return_type=IntegerType)
UDF with nested types
# UDF with nested types
@udf(return_type=StructType([StructField("value1", IntegerType), StructField("value2", IntegerType)]))
def example_udf(x: dict[str, int], y: list[int]):
return {
"value1": x["value1"] + x["value2"] + y[0],
"value2": x["value1"] + x["value2"] + y[1],
}
Source code in src/fenic/api/functions/builtin.py
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 | |
when
when(condition: Column, value: Column) -> Column
Evaluates a conditional expression (like if-then).
Evaluates a condition for each row and returns a value when true. Can be chained with more .when() calls or finished with .otherwise(). All branches must return the same type.
Parameters:
-
condition(Column) –Boolean expression to test
-
value(Column) –Value to return when condition is True
Returns:
-
Column(Column) –A when expression that can be chained with more conditions
Raises:
-
TypeMismatchError–If the condition is not a boolean Column expression.
Example
# Simple if-then (returns null when false)
df.select(fc.when(col("age") >= 18, fc.lit("adult")))
# If-then-else
df.select(
fc.when(col("age") >= 18, fc.lit("adult")).otherwise(fc.lit("minor"))
)
# Multiple conditions (if-elif-else)
df.select(
when(col("score") >= 90, "A")
.when(col("score") >= 80, "B")
.when(col("score") >= 70, "C")
.otherwise("F")
)
Note: Without .otherwise(), unmatched rows return null
Source code in src/fenic/api/functions/builtin.py
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 | |