Skip to content

fenic.api.functions.text

Text manipulation functions for Fenic DataFrames.

Functions:

  • array_join

    Joins an array of strings into a single string with a delimiter.

  • btrim

    Remove specified characters from both sides of strings in a column.

  • byte_length

    Calculate the byte length of each string in the column.

  • character_chunk

    Chunks a string column into chunks of a specified size (in characters) with an optional overlap.

  • compute_fuzzy_ratio

    Compute the similarity between two strings using a fuzzy string matching algorithm.

  • compute_fuzzy_token_set_ratio

    Compute fuzzy similarity using token set comparison.

  • compute_fuzzy_token_sort_ratio

    Compute fuzzy similarity after sorting tokens in each string.

  • concat

    Concatenates multiple columns or strings into a single string.

  • concat_ws

    Concatenates multiple columns or strings into a single string with a separator.

  • count_tokens

    Returns the number of tokens in a string using OpenAI's cl100k_base encoding (tiktoken).

  • extract

    Extracts structured data from text using template-based pattern matching.

  • jinja

    Render a Jinja template using values from the specified columns.

  • length

    Calculate the character length of each string in the column.

  • lower

    Convert all characters in a string column to lowercase.

  • ltrim

    Remove whitespace from the start of strings in a column.

  • parse_transcript

    Parses a transcript from text to a structured format with unified schema.

  • recursive_character_chunk

    Chunks a string column into chunks of a specified size (in characters) with an optional overlap.

  • recursive_token_chunk

    Chunks a string column into chunks of a specified size (in tokens) with an optional overlap.

  • recursive_word_chunk

    Chunks a string column into chunks of a specified size (in words) with an optional overlap.

  • regexp_replace

    Replace all occurrences of a pattern with a new string, treating pattern as a regular expression.

  • replace

    Replace all occurrences of a pattern with a new string, treating pattern as a literal string.

  • rtrim

    Remove whitespace from the end of strings in a column.

  • split

    Split a string column into an array using a regular expression pattern.

  • split_part

    Split a string and return a specific part using 1-based indexing.

  • title_case

    Convert the first character of each word in a string column to uppercase.

  • token_chunk

    Chunks a string column into chunks of a specified size (in tokens) with an optional overlap.

  • trim

    Remove whitespace from both sides of strings in a column.

  • upper

    Convert all characters in a string column to uppercase.

  • word_chunk

    Chunks a string column into chunks of a specified size (in words) with an optional overlap.

array_join

array_join(column: ColumnOrName, delimiter: str) -> Column

Joins an array of strings into a single string with a delimiter.

Parameters:

  • column (ColumnOrName) –

    The column to join

  • delimiter (str) –

    The delimiter to use

Returns: Column: A column containing the joined strings

Join array with comma
# Join array elements with comma
df.select(text.array_join(col("array_column"), ","))
Source code in src/fenic/api/functions/text.py
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
@validate_call(config=ConfigDict(strict=True, arbitrary_types_allowed=True))
def array_join(column: ColumnOrName, delimiter: str) -> Column:
    """Joins an array of strings into a single string with a delimiter.

    Args:
        column: The column to join
        delimiter: The delimiter to use
    Returns:
            Column: A column containing the joined strings

    Example: Join array with comma
        ```python
        # Join array elements with comma
        df.select(text.array_join(col("array_column"), ","))
        ```
    """
    return Column._from_logical_expr(
        ArrayJoinExpr(Column._from_col_or_name(column)._logical_expr, delimiter)
    )

btrim

btrim(col: ColumnOrName, trim: Optional[Union[Column, str]]) -> Column

Remove specified characters from both sides of strings in a column.

This function removes all occurrences of the specified characters from both the beginning and end of each string in the column. If trim is a column expression, the characters to remove are determined dynamically from the values in that column.

Parameters:

  • col (ColumnOrName) –

    The input string column or column name to trim

  • trim (Optional[Union[Column, str]]) –

    The characters to remove from both sides (Default: whitespace) Can be a string or column expression.

Returns:

  • Column ( Column ) –

    A column containing the trimmed strings

Remove brackets from both sides
# Remove brackets from both sides of text
df.select(text.btrim(col("text"), "[]"))
Remove characters specified in a column
# Remove characters specified in a column
df.select(text.btrim(col("text"), col("chars")))
Source code in src/fenic/api/functions/text.py
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
@validate_call(config=ConfigDict(strict=True, arbitrary_types_allowed=True))
def btrim(col: ColumnOrName, trim: Optional[Union[Column, str]]) -> Column:
    """Remove specified characters from both sides of strings in a column.

    This function removes all occurrences of the specified characters from
    both the beginning and end of each string in the column.
    If trim is a column expression, the characters to remove are determined dynamically
    from the values in that column.

    Args:
        col: The input string column or column name to trim
        trim: The characters to remove from both sides (Default: whitespace)
              Can be a string or column expression.

    Returns:
        Column: A column containing the trimmed strings

    Example: Remove brackets from both sides
        ```python
        # Remove brackets from both sides of text
        df.select(text.btrim(col("text"), "[]"))
        ```

    Example: Remove characters specified in a column
        ```python
        # Remove characters specified in a column
        df.select(text.btrim(col("text"), col("chars")))
        ```
    """
    if trim is None:
        trim_expr = None
    elif isinstance(trim, Column):
        trim_expr = trim._logical_expr
    else:
        trim_expr = lit(trim)._logical_expr
    return Column._from_logical_expr(
        StripCharsExpr(Column._from_col_or_name(col)._logical_expr, trim_expr, "both")
    )

byte_length

byte_length(column: ColumnOrName) -> Column

Calculate the byte length of each string in the column.

Parameters:

  • column (ColumnOrName) –

    The input string column to calculate byte lengths for

Returns:

  • Column ( Column ) –

    A column containing the byte length of each string

Get byte lengths
# Get the byte length of each string in the name column
df.select(text.byte_length(col("name")))
Source code in src/fenic/api/functions/text.py
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
@validate_call(config=ConfigDict(strict=True, arbitrary_types_allowed=True))
def byte_length(column: ColumnOrName) -> Column:
    """Calculate the byte length of each string in the column.

    Args:
        column: The input string column to calculate byte lengths for

    Returns:
        Column: A column containing the byte length of each string

    Example: Get byte lengths
        ```python
        # Get the byte length of each string in the name column
        df.select(text.byte_length(col("name")))
        ```
    """
    return Column._from_logical_expr(
        ByteLengthExpr(Column._from_col_or_name(column)._logical_expr)
    )

character_chunk

character_chunk(column: ColumnOrName, chunk_size: int, chunk_overlap_percentage: int = 0) -> Column

Chunks a string column into chunks of a specified size (in characters) with an optional overlap.

The chunking is done by applying a simple sliding window across the text to create chunks of equal size. This approach does not attempt to preserve the underlying structure of the text.

Parameters:

  • column (ColumnOrName) –

    The input string column or column name to chunk

  • chunk_size (int) –

    The size of each chunk in characters

  • chunk_overlap_percentage (int, default: 0 ) –

    The overlap between chunks as a percentage of the chunk size (Default: 0)

Returns:

  • Column ( Column ) –

    A column containing the chunks as an array of strings

Create character chunks
# Create chunks of 100 characters with 20% overlap
df.select(text.character_chunk(col("text"), 100, 20))
Source code in src/fenic/api/functions/text.py
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
@validate_call(config=ConfigDict(strict=True, arbitrary_types_allowed=True))
def character_chunk(
    column: ColumnOrName, chunk_size: int, chunk_overlap_percentage: int = 0
) -> Column:
    """Chunks a string column into chunks of a specified size (in characters) with an optional overlap.

    The chunking is done by applying a simple sliding window across the text to create chunks of equal size.
    This approach does not attempt to preserve the underlying structure of the text.

    Args:
        column: The input string column or column name to chunk
        chunk_size: The size of each chunk in characters
        chunk_overlap_percentage: The overlap between chunks as a percentage of the chunk size (Default: 0)

    Returns:
        Column: A column containing the chunks as an array of strings

    Example: Create character chunks
        ```python
        # Create chunks of 100 characters with 20% overlap
        df.select(text.character_chunk(col("text"), 100, 20))
        ```
    """
    return Column._from_logical_expr(
        TextChunkExpr(
            Column._from_col_or_name(column)._logical_expr,
            desired_chunk_size=chunk_size,
            chunk_overlap_percentage=chunk_overlap_percentage,
            chunk_length_function_name=ChunkLengthFunction.CHARACTER,
        )
    )

compute_fuzzy_ratio

compute_fuzzy_ratio(column: ColumnOrName, other: Union[Column, str], method: FuzzySimilarityMethod = 'indel') -> Column

Compute the similarity between two strings using a fuzzy string matching algorithm.

This function computes a fuzzy similarity score between two string columns (or a string column and a literal string) for each row. It supports multiple well-known string similarity metrics, including Levenshtein, Damerau-Levenshtein, Jaro, Jaro-Winkler, and Hamming.

The returned score is a similarity percentage between 0 and 100, where: - 100 indicates the strings are identical - 0 indicates maximum dissimilarity (as defined by the method)

Based on https://rapidfuzz.github.io/RapidFuzz/Usage/fuzz.html#rapidfuzz.fuzz.ratio

Parameters:

  • column (ColumnOrName) –

    A string column or column name. This is the left-hand side of the comparison.

  • other (Union[Column, str]) –

    A second string column or literal string. This is the right-hand side of the comparison.

  • method (FuzzySimilarityMethod, default: 'indel' ) –

    A string indicating which similarity method to use. Must be one of: - "indel": Indel distance — counts only insertions and deletions (no substitutions); based on the Longest Common Subsequence. - "levenshtein": Levenshtein distance (edit distance) - "damerau_levenshtein": Damerau-Levenshtein distance (includes transpositions) - "jaro": Jaro similarity, accounts for transpositions and proximity - "jaro_winkler": Jaro-Winkler similarity, gives higher scores for common prefixes - "hamming": Hamming distance. Counts differing positions between two equal-length strings, padding shorter string if needed.

Returns:

  • Column ( Column ) –

    A double column with similarity scores in the range [0, 100].

Compare two columns
result = df.select(
    compute_fuzzy_ratio(col("a"), col("b"), method="levenshtein").alias("sim")
)
Compare a column to a literal string
result = df.select(
    compute_fuzzy_ratio(col("a"), "world", method="jaro").alias("sim_to_world")
)
Source code in src/fenic/api/functions/text.py
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
@validate_call(config=ConfigDict(strict=True, arbitrary_types_allowed=True))
def compute_fuzzy_ratio(column: ColumnOrName, other: Union[Column, str], method: FuzzySimilarityMethod = "indel") -> Column:
    """Compute the similarity between two strings using a fuzzy string matching algorithm.

    This function computes a fuzzy similarity score between two string columns (or a string column
    and a literal string) for each row. It supports multiple well-known string similarity metrics,
    including Levenshtein, Damerau-Levenshtein, Jaro, Jaro-Winkler, and Hamming.

    The returned score is a similarity percentage between 0 and 100, where:
        - 100 indicates the strings are identical
        - 0 indicates maximum dissimilarity (as defined by the method)

    Based on https://rapidfuzz.github.io/RapidFuzz/Usage/fuzz.html#rapidfuzz.fuzz.ratio

    Args:
        column: A string column or column name. This is the left-hand side of the comparison.
        other: A second string column or literal string. This is the right-hand side of the comparison.
        method: A string indicating which similarity method to use. Must be one of:
            - `"indel"`: Indel distance — counts only insertions and deletions (no substitutions); based on the Longest Common Subsequence.
            - `"levenshtein"`: Levenshtein distance (edit distance)
            - `"damerau_levenshtein"`: Damerau-Levenshtein distance (includes transpositions)
            - `"jaro"`: Jaro similarity, accounts for transpositions and proximity
            - `"jaro_winkler"`: Jaro-Winkler similarity, gives higher scores for common prefixes
            - `"hamming"`: Hamming distance. Counts differing positions between two equal-length strings, padding shorter string if needed.

    Returns:
        Column: A double column with similarity scores in the range [0, 100].

    Example: Compare two columns
        ```python
        result = df.select(
            compute_fuzzy_ratio(col("a"), col("b"), method="levenshtein").alias("sim")
        )
        ```

    Example: Compare a column to a literal string
        ```python
        result = df.select(
            compute_fuzzy_ratio(col("a"), "world", method="jaro").alias("sim_to_world")
        )
        ```
    """
    if isinstance(other, str):
        other_expr = LiteralExpr(other, StringType)
    else:
        other_expr = other._logical_expr

    return Column._from_logical_expr(FuzzyRatioExpr(Column._from_col_or_name(column)._logical_expr, other_expr, method))

compute_fuzzy_token_set_ratio

compute_fuzzy_token_set_ratio(column: ColumnOrName, other: Union[Column, str], method: FuzzySimilarityMethod = 'indel') -> Column

Compute fuzzy similarity using token set comparison.

Tokenizes strings by whitespace, creates sets of unique tokens, then compares three combinations: diff1 vs diff2, intersection vs left set, and intersection vs right set. Returns the maximum similarity score. Useful for comparing strings where both word order and duplicates don't matter.

Based on https://rapidfuzz.github.io/RapidFuzz/Usage/fuzz.html#rapidfuzz.fuzz.token_set_ratio

Parameters:

  • column (ColumnOrName) –

    First string column to compare

  • other (Union[Column, str]) –

    Second string column or literal string to compare against

  • method (FuzzySimilarityMethod, default: 'indel' ) –

    Similarity algorithm to use for comparison

Returns:

  • Column

    Double column with similarity scores between 0 and 100

Example
# df.select(compute_fuzzy_token_set_ratio(col("city"), "city of new york", "indel"))
# "new york city new" → unique tokens: {"city", "new", "york"}
# "city of new york" → unique tokens: {"city", "new", "of", "york"}
# intersection: {"city", "new", "york"}
# diff1: {} (empty)
# diff2: {"of"}
# Compares: diff1 vs diff2, intersection vs set1, intersection vs set2
# Returns max similarity score = 100
Source code in src/fenic/api/functions/text.py
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
@validate_call(config=ConfigDict(strict=True, arbitrary_types_allowed=True))
def compute_fuzzy_token_set_ratio(column: ColumnOrName, other: Union[Column, str], method: FuzzySimilarityMethod = "indel") -> Column:
    """Compute fuzzy similarity using token set comparison.

    Tokenizes strings by whitespace, creates sets of unique tokens, then
    compares three combinations: diff1 vs diff2, intersection vs left set,
    and intersection vs right set. Returns the maximum similarity score.
    Useful for comparing strings where both word order and duplicates
    don't matter.

    Based on https://rapidfuzz.github.io/RapidFuzz/Usage/fuzz.html#rapidfuzz.fuzz.token_set_ratio

    Args:
        column: First string column to compare
        other: Second string column or literal string to compare against
        method: Similarity algorithm to use for comparison

    Returns:
        Double column with similarity scores between 0 and 100

    Example:
        ```python
        # df.select(compute_fuzzy_token_set_ratio(col("city"), "city of new york", "indel"))
        # "new york city new" → unique tokens: {"city", "new", "york"}
        # "city of new york" → unique tokens: {"city", "new", "of", "york"}
        # intersection: {"city", "new", "york"}
        # diff1: {} (empty)
        # diff2: {"of"}
        # Compares: diff1 vs diff2, intersection vs set1, intersection vs set2
        # Returns max similarity score = 100
        ```
    """
    if isinstance(other, str):
        other_expr = LiteralExpr(other, StringType)
    else:
        other_expr = other._logical_expr

    return Column._from_logical_expr(FuzzyTokenSetRatioExpr(Column._from_col_or_name(column)._logical_expr, other_expr, method))

compute_fuzzy_token_sort_ratio

compute_fuzzy_token_sort_ratio(column: ColumnOrName, other: Union[Column, str], method: FuzzySimilarityMethod = 'indel') -> Column

Compute fuzzy similarity after sorting tokens in each string.

Tokenizes strings by whitespace, sorts tokens alphabetically, concatenates them back into a string, then applies the specified similarity metric. Useful for comparing strings where word order doesn't matter.

Based on https://rapidfuzz.github.io/RapidFuzz/Usage/fuzz.html#rapidfuzz.fuzz.token_sort_ratio

Parameters:

  • column (ColumnOrName) –

    First string column to compare

  • other (Union[Column, str]) –

    Second string column or literal string to compare against

  • method (FuzzySimilarityMethod, default: 'indel' ) –

    Similarity algorithm to use after token sorting

Returns:

  • Column

    Double column with similarity scores between 0 and 100

Example
# df.select(compute_fuzzy_token_sort_ratio(col("city"), "city  new  york", "levenshtein"))
# "new york city" → ["new", "york", "city"] → sorted → ["city", "new", "york"] → "city new york"
# "city new york" → ["city", "new", "york"] → sorted → ["city", "new", "york"] → "city new york"
# levenshtein similarity("city new york", "city new york") = 100
Source code in src/fenic/api/functions/text.py
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
@validate_call(config=ConfigDict(strict=True, arbitrary_types_allowed=True))
def compute_fuzzy_token_sort_ratio(column: ColumnOrName, other: Union[Column, str], method: FuzzySimilarityMethod = "indel") -> Column:
    """Compute fuzzy similarity after sorting tokens in each string.

    Tokenizes strings by whitespace, sorts tokens alphabetically, concatenates
    them back into a string, then applies the specified similarity metric.
    Useful for comparing strings where word order doesn't matter.

    Based on https://rapidfuzz.github.io/RapidFuzz/Usage/fuzz.html#rapidfuzz.fuzz.token_sort_ratio

    Args:
        column: First string column to compare
        other: Second string column or literal string to compare against
        method: Similarity algorithm to use after token sorting

    Returns:
        Double column with similarity scores between 0 and 100

    Example:
        ```python
        # df.select(compute_fuzzy_token_sort_ratio(col("city"), "city  new  york", "levenshtein"))
        # "new york city" → ["new", "york", "city"] → sorted → ["city", "new", "york"] → "city new york"
        # "city new york" → ["city", "new", "york"] → sorted → ["city", "new", "york"] → "city new york"
        # levenshtein similarity("city new york", "city new york") = 100
        ```
    """
    if isinstance(other, str):
        other_expr = LiteralExpr(other, StringType)
    else:
        other_expr = other._logical_expr

    return Column._from_logical_expr(FuzzyTokenSortRatioExpr(Column._from_col_or_name(column)._logical_expr, other_expr, method))

concat

concat(*cols: ColumnOrName) -> Column

Concatenates multiple columns or strings into a single string.

Parameters:

  • *cols (ColumnOrName, default: () ) –

    Columns or strings to concatenate

Returns:

  • Column ( Column ) –

    A column containing the concatenated strings

Concatenate columns
# Concatenate two columns with a space in between
df.select(text.concat(col("col1"), lit(" "), col("col2")))
Source code in src/fenic/api/functions/text.py
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
@validate_call(config=ConfigDict(strict=True, arbitrary_types_allowed=True))
def concat(*cols: ColumnOrName) -> Column:
    """Concatenates multiple columns or strings into a single string.

    Args:
        *cols: Columns or strings to concatenate

    Returns:
        Column: A column containing the concatenated strings

    Example: Concatenate columns
        ```python
        # Concatenate two columns with a space in between
        df.select(text.concat(col("col1"), lit(" "), col("col2")))
        ```
    """
    if not cols:
        raise ValidationError("No columns were provided. Please specify at least one column to use with the concat method.")

    flattened_args = []
    for arg in cols:
        if isinstance(arg, (list, tuple)):
            flattened_args.extend(arg)
        else:
            flattened_args.append(arg)

    flattened_exprs = [
        Column._from_col_or_name(c)._logical_expr for c in flattened_args
    ]
    return Column._from_logical_expr(ConcatExpr(flattened_exprs))

concat_ws

concat_ws(separator: str, *cols: ColumnOrName) -> Column

Concatenates multiple columns or strings into a single string with a separator.

Parameters:

  • separator (str) –

    The separator to use

  • *cols (ColumnOrName, default: () ) –

    Columns or strings to concatenate

Returns:

  • Column ( Column ) –

    A column containing the concatenated strings

Concatenate with comma separator
# Concatenate columns with comma separator
df.select(text.concat_ws(",", col("col1"), col("col2")))
Source code in src/fenic/api/functions/text.py
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
@validate_call(config=ConfigDict(strict=True, arbitrary_types_allowed=True))
def concat_ws(separator: str, *cols: ColumnOrName) -> Column:
    """Concatenates multiple columns or strings into a single string with a separator.

    Args:
        separator: The separator to use
        *cols: Columns or strings to concatenate

    Returns:
        Column: A column containing the concatenated strings

    Example: Concatenate with comma separator
        ```python
        # Concatenate columns with comma separator
        df.select(text.concat_ws(",", col("col1"), col("col2")))
        ```
    """
    if not cols:
        raise ValidationError("No columns were provided. Please specify at least one column to use with the concat_ws method.")

    flattened_args = []
    for arg in cols:
        if isinstance(arg, (list, tuple)):
            flattened_args.extend(arg)
        else:
            flattened_args.append(arg)

    expr_args = []
    for arg in flattened_args:
        expr_args.append(Column._from_col_or_name(arg)._logical_expr)
        expr_args.append(lit(separator)._logical_expr)
    expr_args.pop()
    return Column._from_logical_expr(ConcatExpr(expr_args))

count_tokens

count_tokens(column: ColumnOrName) -> Column

Returns the number of tokens in a string using OpenAI's cl100k_base encoding (tiktoken).

Parameters:

  • column (ColumnOrName) –

    The input string column.

Returns:

  • Column ( Column ) –

    A column with the token counts for each input string.

Count tokens in text
# Count tokens in a text column
df.select(text.count_tokens(col("text")))
Source code in src/fenic/api/functions/text.py
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
@validate_call(config=ConfigDict(strict=True, arbitrary_types_allowed=True))
def count_tokens(
    column: ColumnOrName,
) -> Column:
    r"""Returns the number of tokens in a string using OpenAI's cl100k_base encoding (tiktoken).

    Args:
        column: The input string column.

    Returns:
        Column: A column with the token counts for each input string.

    Example: Count tokens in text
        ```python
        # Count tokens in a text column
        df.select(text.count_tokens(col("text")))
        ```
    """
    return Column._from_logical_expr(
        CountTokensExpr(Column._from_col_or_name(column)._logical_expr)
    )

extract

extract(column: ColumnOrName, template: str) -> Column

Extracts structured data from text using template-based pattern matching.

Matches each string in the input column against a template pattern with named placeholders. Each placeholder can specify a format rule to handle different data types within the text.

Parameters:

  • column (ColumnOrName) –

    Input text column to extract from

  • template (str) –

    Template string with placeholders as ${field_name} or ${field_name:format} Available formats: none, csv, json, quoted

Returns:

  • Column ( Column ) –

    Struct column with fields corresponding to template placeholders. All fields are strings except JSON fields which preserve their parsed type.

Template Syntax
  • ${field_name} - Extract field as plain text
  • ${field_name:csv} - Parse as CSV field (handles quoted values)
  • ${field_name:json} - Parse as JSON and preserve type
  • ${field_name:quoted} - Extract quoted string (removes outer quotes)
  • $ - Literal dollar sign

Raises:

Basic extraction
text.extract(col("log"), "${date} ${level} ${message}")
# Input: "2024-01-15 ERROR Connection failed"
# Output: {date: "2024-01-15", level: "ERROR", message: "Connection failed"}
Mixed format extraction
text.extract(col("data"), 'Name: ${name:csv}, Price: ${price}, Tags: ${tags:json}')
# Input: 'Name: "Smith, John", Price: 99.99, Tags: ["a", "b"]'
# Output: {name: "Smith, John", price: "99.99", tags: ["a", "b"]}
Quoted field handling
text.extract(col("record"), 'Title: ${title:quoted}, Author: ${author}')
# Input: 'Title: "To Kill a Mockingbird", Author: Harper Lee'
# Output: {title: "To Kill a Mockingbird", author: "Harper Lee"}
Note

If a string doesn't match the template pattern, all extracted fields will be null.

Source code in src/fenic/api/functions/text.py
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
@validate_call(config=ConfigDict(strict=True, arbitrary_types_allowed=True))
def extract(column: ColumnOrName, template: str) -> Column:
    """Extracts structured data from text using template-based pattern matching.

    Matches each string in the input column against a template pattern with named
    placeholders. Each placeholder can specify a format rule to handle different
    data types within the text.

    Args:
        column: Input text column to extract from
        template: Template string with placeholders as ``${field_name}`` or ``${field_name:format}``
                 Available formats: none, csv, json, quoted

    Returns:
        Column: Struct column with fields corresponding to template placeholders.
                All fields are strings except JSON fields which preserve their parsed type.

    Template Syntax:
        - ``${field_name}`` - Extract field as plain text
        - ``${field_name:csv}`` - Parse as CSV field (handles quoted values)
        - ``${field_name:json}`` - Parse as JSON and preserve type
        - ``${field_name:quoted}`` - Extract quoted string (removes outer quotes)
        - ``$`` - Literal dollar sign

    Raises:
        ValidationError: If template syntax is invalid

    Example: Basic extraction
        ```python
        text.extract(col("log"), "${date} ${level} ${message}")
        # Input: "2024-01-15 ERROR Connection failed"
        # Output: {date: "2024-01-15", level: "ERROR", message: "Connection failed"}
        ```

    Example: Mixed format extraction
        ```python
        text.extract(col("data"), 'Name: ${name:csv}, Price: ${price}, Tags: ${tags:json}')
        # Input: 'Name: "Smith, John", Price: 99.99, Tags: ["a", "b"]'
        # Output: {name: "Smith, John", price: "99.99", tags: ["a", "b"]}
        ```

    Example: Quoted field handling
        ```python
        text.extract(col("record"), 'Title: ${title:quoted}, Author: ${author}')
        # Input: 'Title: "To Kill a Mockingbird", Author: Harper Lee'
        # Output: {title: "To Kill a Mockingbird", author: "Harper Lee"}
        ```

    Note:
        If a string doesn't match the template pattern, all extracted fields will be null.
    """
    return Column._from_logical_expr(
        TextractExpr(Column._from_col_or_name(column)._logical_expr, template)
    )

jinja

jinja(jinja_template: str, /, strict: bool = True, **columns: Column) -> Column

Render a Jinja template using values from the specified columns.

This function evaluates a Jinja2 template string for each row, using the provided columns as template variables. Only a subset of Jinja2 features is supported.

Parameters:

  • jinja_template (str) –

    A Jinja2 template string to render for each row. Variables are referenced using double braces: {{ variable_name }}

  • strict (bool, default: True ) –

    If True, when any of the provided columns has a None value for a row, the entire row's output will be None (template is not rendered). If False, None values are handled using Jinja2's null rendering behavior. Default is True.

  • **columns (Column, default: {} ) –

    Keyword arguments mapping variable names to columns. Each keyword becomes a variable in the template context.

Returns:

  • Column ( Column ) –

    A string column containing the rendered template for each row

Supported Features
  • Variable substitution: {{ variable }}
  • Struct/object field access: {{ user.name }}
  • Array indexing with literals: {{ items[0] }}, {{ data["key"] }}
  • For loops: {% for item in items %}...{% endfor %}
  • If/elif/else conditionals: {% if condition %}...{% endif %}
  • Loop variables: {{ loop.index }}, {{ loop.first }}, etc.
  • Constants: {{ "literal string" }}, {{ 42 }}

Not Supported (use column expressions instead): - Filters: {{ name|upper }} → Use upper_name=fc.upper(col("name")) - Function calls: {{ len(items) }} → Use item_count=fc.array_size(col("items")) - Operators: {% if price > 100 %} → Use is_expensive=(col("price") > 100) - Arithmetic: {{ price * quantity }} → Use total=col("price") * col("quantity") - Dynamic indexing: {{ items[i] }} → Use item=(fc.col("items").get_item(col("index"))) - Variable assignment: {% set x = 5 %} → Pre-compute as column expression - Macros, includes, extends: Not supported

LLM prompt formatting with conditional context and examples
# Format prompts with user query, conditional context, and examples
prompt_template = '''
Answer the user's question.

{% if context %}
Context: {{ context }}
{% endif %}

{% if examples %}
Few-shot examples:
{% for ex in examples %}
Q: {{ ex.question }}
A: {{ ex.answer }}
{% endfor %}
{% endif %}

Question: {{ query }}

Please provide a {{ style }} response.'''

# Generate prompts with varying context based on query type
result = df.select(
    text.jinja(
        prompt_template,
        # Direct columns
        query=col("user_question"),
        context=col("retrieved_context"),  # Can be null for some rows

        # Column expression for conditional logic
        style=fc.when(col("query_type") == "technical", "detailed and technical")
              .when(col("query_type") == "casual", "conversational")
              .otherwise("clear and concise"),

        # Array of examples (struct array)
        examples=col("few_shot_examples")  # Array of {question, answer} structs
    ).alias("llm_prompt")
)
Notes
  • Template syntax is validated at query planning time
  • Complex operations can use column expressions
  • Arrays can only be iterated with {% for %} or accessed with literal indices
  • Structs can only use literal field names
  • Null values are rendered according to Jinja2's null rendering behavior
Source code in src/fenic/api/functions/text.py
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
@validate_call(config=ConfigDict(strict=True, arbitrary_types_allowed=True))
def jinja(
    jinja_template: str,
    /,
    strict: bool = True,
    **columns: Column
) -> Column:
    """Render a Jinja template using values from the specified columns.

    This function evaluates a Jinja2 template string for each row, using the provided
    columns as template variables. Only a subset of Jinja2 features is supported.

    Args:
        jinja_template: A Jinja2 template string to render for each row.
                        Variables are referenced using double braces: {{ variable_name }}
        strict: If True, when any of the provided columns has a None value for a row,
                the entire row's output will be None (template is not rendered).
                If False, None values are handled using Jinja2's null rendering behavior.
                Default is True.
        **columns: Keyword arguments mapping variable names to columns.
                  Each keyword becomes a variable in the template context.

    Returns:
        Column: A string column containing the rendered template for each row

    Supported Features:
        - Variable substitution: {{ variable }}
        - Struct/object field access: {{ user.name }}
        - Array indexing with literals: {{ items[0] }}, {{ data["key"] }}
        - For loops: {% for item in items %}...{% endfor %}
        - If/elif/else conditionals: {% if condition %}...{% endif %}
        - Loop variables: {{ loop.index }}, {{ loop.first }}, etc.
        - Constants: {{ "literal string" }}, {{ 42 }}

    Not Supported (use column expressions instead):
        - **Filters**: {{ name|upper }} → Use upper_name=fc.upper(col("name"))
        - **Function calls**: {{ len(items) }} → Use item_count=fc.array_size(col("items"))
        - **Operators**: {% if price > 100 %} → Use is_expensive=(col("price") > 100)
        - **Arithmetic**: {{ price * quantity }} → Use total=col("price") * col("quantity")
        - **Dynamic indexing**: {{ items[i] }} → Use item=(fc.col("items").get_item(col("index")))
        - **Variable assignment**: {% set x = 5 %} → Pre-compute as column expression
        - **Macros, includes, extends**: Not supported

    Example: LLM prompt formatting with conditional context and examples
        ```python
        # Format prompts with user query, conditional context, and examples
        prompt_template = '''
        Answer the user's question.

        {% if context %}
        Context: {{ context }}
        {% endif %}

        {% if examples %}
        Few-shot examples:
        {% for ex in examples %}
        Q: {{ ex.question }}
        A: {{ ex.answer }}
        {% endfor %}
        {% endif %}

        Question: {{ query }}

        Please provide a {{ style }} response.'''

        # Generate prompts with varying context based on query type
        result = df.select(
            text.jinja(
                prompt_template,
                # Direct columns
                query=col("user_question"),
                context=col("retrieved_context"),  # Can be null for some rows

                # Column expression for conditional logic
                style=fc.when(col("query_type") == "technical", "detailed and technical")
                      .when(col("query_type") == "casual", "conversational")
                      .otherwise("clear and concise"),

                # Array of examples (struct array)
                examples=col("few_shot_examples")  # Array of {question, answer} structs
            ).alias("llm_prompt")
        )
        ```

    Notes:
        - Template syntax is validated at query planning time
        - Complex operations can use column expressions
        - Arrays can only be iterated with {% for %} or accessed with literal indices
        - Structs can only use literal field names
        - Null values are rendered according to Jinja2's null rendering behavior
    """
    # Convert keyword arguments to column expressions with proper names
    column_exprs: List[LogicalExpr] = []
    for var_name, column in columns.items():
        if isinstance(column._logical_expr, ColumnExpr) and column._logical_expr.name == var_name:
            column_exprs.append(column._logical_expr)
        else:
            column_exprs.append(column.alias(var_name)._logical_expr)

    return Column._from_logical_expr(
        JinjaExpr(column_exprs, jinja_template, strict)
    )

length

length(column: ColumnOrName) -> Column

Calculate the character length of each string in the column.

Parameters:

  • column (ColumnOrName) –

    The input string column to calculate lengths for

Returns:

  • Column ( Column ) –

    A column containing the length of each string in characters

Get string lengths
# Get the length of each string in the name column
df.select(text.length(col("name")))
Source code in src/fenic/api/functions/text.py
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
@validate_call(config=ConfigDict(strict=True, arbitrary_types_allowed=True))
def length(column: ColumnOrName) -> Column:
    """Calculate the character length of each string in the column.

    Args:
        column: The input string column to calculate lengths for

    Returns:
        Column: A column containing the length of each string in characters

    Example: Get string lengths
        ```python
        # Get the length of each string in the name column
        df.select(text.length(col("name")))
        ```
    """
    return Column._from_logical_expr(
        StrLengthExpr(Column._from_col_or_name(column)._logical_expr)
    )

lower

lower(column: ColumnOrName) -> Column

Convert all characters in a string column to lowercase.

Parameters:

  • column (ColumnOrName) –

    The input string column to convert to lowercase

Returns:

  • Column ( Column ) –

    A column containing the lowercase strings

Convert text to lowercase
# Convert all text in the name column to lowercase
df.select(text.lower(col("name")))
Source code in src/fenic/api/functions/text.py
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
@validate_call(config=ConfigDict(strict=True, arbitrary_types_allowed=True))
def lower(column: ColumnOrName) -> Column:
    """Convert all characters in a string column to lowercase.

    Args:
        column: The input string column to convert to lowercase

    Returns:
        Column: A column containing the lowercase strings

    Example: Convert text to lowercase
        ```python
        # Convert all text in the name column to lowercase
        df.select(text.lower(col("name")))
        ```
    """
    return Column._from_logical_expr(
        StringCasingExpr(Column._from_col_or_name(column)._logical_expr, "lower")
    )

ltrim

ltrim(col: ColumnOrName) -> Column

Remove whitespace from the start of strings in a column.

This function removes all whitespace characters (spaces, tabs, newlines) from the beginning of each string in the column.

Parameters:

  • col (ColumnOrName) –

    The input string column or column name to trim

Returns:

  • Column ( Column ) –

    A column containing the left-trimmed strings

Remove leading whitespace
# Remove whitespace from the start of text
df.select(text.ltrim(col("text")))
Source code in src/fenic/api/functions/text.py
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
@validate_call(config=ConfigDict(strict=True, arbitrary_types_allowed=True))
def ltrim(col: ColumnOrName) -> Column:
    """Remove whitespace from the start of strings in a column.

    This function removes all whitespace characters (spaces, tabs, newlines) from
    the beginning of each string in the column.

    Args:
        col: The input string column or column name to trim

    Returns:
        Column: A column containing the left-trimmed strings

    Example: Remove leading whitespace
        ```python
        # Remove whitespace from the start of text
        df.select(text.ltrim(col("text")))
        ```
    """
    return Column._from_logical_expr(
        StripCharsExpr(Column._from_col_or_name(col)._logical_expr, None, "left")
    )

parse_transcript

parse_transcript(column: ColumnOrName, format: TranscriptFormatType) -> Column

Parses a transcript from text to a structured format with unified schema.

Converts transcript text in various formats (srt, webvtt, generic) to a standardized structure with fields: index, speaker, start_time, end_time, duration, content, format. All timestamps are returned as floating-point seconds from the start.

Parameters:

  • column (ColumnOrName) –

    The input string column or column name containing transcript text

  • format (TranscriptFormatType) –

    The format of the transcript ("srt", "webvtt", or "generic")

Returns:

  • Column ( Column ) –

    A column containing an array of structured transcript entries with unified schema:

    • index: Optional[int] - Entry index (1-based)
    • speaker: Optional[str] - Speaker name (for generic format)
    • start_time: float - Start time in seconds
    • end_time: Optional[float] - End time in seconds
    • duration: Optional[float] - Duration in seconds
    • content: str - Transcript content/text
    • format: str - Original format ("srt", "webvtt", or "generic")

Examples:

>>> # Parse SRT format transcript
>>> df.select(text.parse_transcript(col("transcript"), "srt"))
>>> # Parse generic conversation transcript
>>> df.select(text.parse_transcript(col("transcript"), "generic"))
>>> # Parse WebVTT format transcript
>>> df.select(text.parse_transcript(col("transcript"), "webvtt"))
Source code in src/fenic/api/functions/text.py
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
@validate_call(config=ConfigDict(strict=True, arbitrary_types_allowed=True))
def parse_transcript(column: ColumnOrName, format: TranscriptFormatType) -> Column:
    """Parses a transcript from text to a structured format with unified schema.

    Converts transcript text in various formats (srt, webvtt, generic) to a standardized structure
    with fields: index, speaker, start_time, end_time, duration, content, format.
    All timestamps are returned as floating-point seconds from the start.

    Args:
        column: The input string column or column name containing transcript text
        format: The format of the transcript ("srt", "webvtt", or "generic")

    Returns:
        Column: A column containing an array of structured transcript entries with unified schema:

            - index: Optional[int] - Entry index (1-based)
            - speaker: Optional[str] - Speaker name (for generic format)
            - start_time: float - Start time in seconds
            - end_time: Optional[float] - End time in seconds
            - duration: Optional[float] - Duration in seconds
            - content: str - Transcript content/text
            - format: str - Original format ("srt", "webvtt", or "generic")

    Examples:
        >>> # Parse SRT format transcript
        >>> df.select(text.parse_transcript(col("transcript"), "srt"))
        >>> # Parse generic conversation transcript
        >>> df.select(text.parse_transcript(col("transcript"), "generic"))
        >>> # Parse WebVTT format transcript
        >>> df.select(text.parse_transcript(col("transcript"), "webvtt"))
    """
    return Column._from_logical_expr(
        TsParseExpr(Column._from_col_or_name(column)._logical_expr, format)
    )

recursive_character_chunk

recursive_character_chunk(column: ColumnOrName, chunk_size: int, chunk_overlap_percentage: int, chunking_character_set_custom_characters: Optional[list[str]] = None) -> Column

Chunks a string column into chunks of a specified size (in characters) with an optional overlap.

The chunking is performed recursively, attempting to preserve the underlying structure of the text by splitting on natural boundaries (paragraph breaks, sentence breaks, etc.) to maintain context. By default, these characters are ['\n\n', '\n', '.', ';', ':', ' ', '-', ''], but this can be customized.

Parameters:

  • column (ColumnOrName) –

    The input string column or column name to chunk

  • chunk_size (int) –

    The size of each chunk in characters

  • chunk_overlap_percentage (int) –

    The overlap between each chunk as a percentage of the chunk size

  • chunking_character_set_custom_characters (Optional, default: None ) –

    List of alternative characters to split on. Note that the characters should be ordered from coarsest to finest desired granularity -- earlier characters in the list should result in fewer overall splits than later characters.

Returns:

  • Column ( Column ) –

    A column containing the chunks as an array of strings

Default character chunking
# Create chunks of at most 100 characters with 20% overlap
df.select(
    text.recursive_character_chunk(col("text"), 100, 20).alias("chunks")
)
Custom character chunking
# Create chunks with custom split characters
df.select(
    text.recursive_character_chunk(
        col("text"),
        100,
        20,
        ['\n\n', '\n', '.', ' ', '']
    ).alias("chunks")
)
Source code in src/fenic/api/functions/text.py
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
@validate_call(config=ConfigDict(strict=True, arbitrary_types_allowed=True))
def recursive_character_chunk(
    column: ColumnOrName,
    chunk_size: int,
    chunk_overlap_percentage: int,
    chunking_character_set_custom_characters: Optional[list[str]] = None,
) -> Column:
    r"""Chunks a string column into chunks of a specified size (in characters) with an optional overlap.

    The chunking is performed recursively, attempting to preserve the underlying structure of the text
    by splitting on natural boundaries (paragraph breaks, sentence breaks, etc.) to maintain context.
    By default, these characters are ['\n\n', '\n', '.', ';', ':', ' ', '-', ''], but this can be customized.

    Args:
        column: The input string column or column name to chunk
        chunk_size: The size of each chunk in characters
        chunk_overlap_percentage: The overlap between each chunk as a percentage of the chunk size
        chunking_character_set_custom_characters (Optional): List of alternative characters to split on. Note that the characters should be ordered from coarsest to finest desired granularity -- earlier characters in the list should result in fewer overall splits than later characters.

    Returns:
        Column: A column containing the chunks as an array of strings

    Example: Default character chunking
        ```python
        # Create chunks of at most 100 characters with 20% overlap
        df.select(
            text.recursive_character_chunk(col("text"), 100, 20).alias("chunks")
        )
        ```

    Example: Custom character chunking
        ```python
        # Create chunks with custom split characters
        df.select(
            text.recursive_character_chunk(
                col("text"),
                100,
                20,
                ['\n\n', '\n', '.', ' ', '']
            ).alias("chunks")
        )
        ```
    """
    if chunking_character_set_custom_characters is None:
        chunking_character_set_name = ChunkCharacterSet.ASCII
    else:
        chunking_character_set_name = ChunkCharacterSet.CUSTOM

    return Column._from_logical_expr(
        RecursiveTextChunkExpr(
            Column._from_col_or_name(column)._logical_expr,
            desired_chunk_size=chunk_size,
            chunk_overlap_percentage=chunk_overlap_percentage,
            chunk_length_function_name=ChunkLengthFunction.CHARACTER,
            chunking_character_set_name=chunking_character_set_name,
            chunking_character_set_custom_characters=chunking_character_set_custom_characters,
        )
    )

recursive_token_chunk

recursive_token_chunk(column: ColumnOrName, chunk_size: int, chunk_overlap_percentage: int, chunking_character_set_custom_characters: Optional[list[str]] = None) -> Column

Chunks a string column into chunks of a specified size (in tokens) with an optional overlap.

The chunking is performed recursively, attempting to preserve the underlying structure of the text by splitting on natural boundaries (paragraph breaks, sentence breaks, etc.) to maintain context. By default, these characters are ['\n\n', '\n', '.', ';', ':', ' ', '-', ''], but this can be customized.

Parameters:

  • column (ColumnOrName) –

    The input string column or column name to chunk

  • chunk_size (int) –

    The size of each chunk in tokens

  • chunk_overlap_percentage (int) –

    The overlap between each chunk as a percentage of the chunk size

  • chunking_character_set_custom_characters (Optional, default: None ) –

    List of alternative characters to split on. Note that the characters should be ordered from coarsest to finest desired granularity -- earlier characters in the list should result in fewer overall splits than later characters.

Returns:

  • Column ( Column ) –

    A column containing the chunks as an array of strings

Default token chunking
# Create chunks of at most 100 tokens with 20% overlap
df.select(
    text.recursive_token_chunk(col("text"), 100, 20).alias("chunks")
)
Custom token chunking
# Create chunks with custom split characters
df.select(
    text.recursive_token_chunk(
        col("text"),
        100,
        20,
        ['\n\n', '\n', '.', ' ', '']
    ).alias("chunks")
)
Source code in src/fenic/api/functions/text.py
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
@validate_call(config=ConfigDict(strict=True, arbitrary_types_allowed=True))
def recursive_token_chunk(
    column: ColumnOrName,
    chunk_size: int,
    chunk_overlap_percentage: int,
    chunking_character_set_custom_characters: Optional[list[str]] = None,
) -> Column:
    r"""Chunks a string column into chunks of a specified size (in tokens) with an optional overlap.

    The chunking is performed recursively, attempting to preserve the underlying structure of the text
    by splitting on natural boundaries (paragraph breaks, sentence breaks, etc.) to maintain context.
    By default, these characters are ['\n\n', '\n', '.', ';', ':', ' ', '-', ''], but this can be customized.

    Args:
        column: The input string column or column name to chunk
        chunk_size: The size of each chunk in tokens
        chunk_overlap_percentage: The overlap between each chunk as a percentage of the chunk size
        chunking_character_set_custom_characters (Optional): List of alternative characters to split on. Note that the characters should be ordered from coarsest to finest desired granularity -- earlier characters in the list should result in fewer overall splits than later characters.

    Returns:
        Column: A column containing the chunks as an array of strings

    Example: Default token chunking
        ```python
        # Create chunks of at most 100 tokens with 20% overlap
        df.select(
            text.recursive_token_chunk(col("text"), 100, 20).alias("chunks")
        )
        ```

    Example: Custom token chunking
        ```python
        # Create chunks with custom split characters
        df.select(
            text.recursive_token_chunk(
                col("text"),
                100,
                20,
                ['\n\n', '\n', '.', ' ', '']
            ).alias("chunks")
        )
        ```
    """
    if chunking_character_set_custom_characters is None:
        chunking_character_set_name = ChunkCharacterSet.ASCII
    else:
        chunking_character_set_name = ChunkCharacterSet.CUSTOM

    return Column._from_logical_expr(
        RecursiveTextChunkExpr(
            Column._from_col_or_name(column)._logical_expr,
            desired_chunk_size=chunk_size,
            chunk_overlap_percentage=chunk_overlap_percentage,
            chunk_length_function_name=ChunkLengthFunction.TOKEN,
            chunking_character_set_name=chunking_character_set_name,
            chunking_character_set_custom_characters=chunking_character_set_custom_characters,
        )
    )

recursive_word_chunk

recursive_word_chunk(column: ColumnOrName, chunk_size: int, chunk_overlap_percentage: int, chunking_character_set_custom_characters: Optional[list[str]] = None) -> Column

Chunks a string column into chunks of a specified size (in words) with an optional overlap.

The chunking is performed recursively, attempting to preserve the underlying structure of the text by splitting on natural boundaries (paragraph breaks, sentence breaks, etc.) to maintain context. By default, these characters are ['\n\n', '\n', '.', ';', ':', ' ', '-', ''], but this can be customized.

Parameters:

  • column (ColumnOrName) –

    The input string column or column name to chunk

  • chunk_size (int) –

    The size of each chunk in words

  • chunk_overlap_percentage (int) –

    The overlap between each chunk as a percentage of the chunk size

  • chunking_character_set_custom_characters (Optional, default: None ) –

    List of alternative characters to split on. Note that the characters should be ordered from coarsest to finest desired granularity -- earlier characters in the list should result in fewer overall splits than later characters.

Returns:

  • Column ( Column ) –

    A column containing the chunks as an array of strings

Default word chunking
# Create chunks of at most 100 words with 20% overlap
df.select(
    text.recursive_word_chunk(col("text"), 100, 20).alias("chunks")
)
Custom word chunking
# Create chunks with custom split characters
df.select(
    text.recursive_word_chunk(
        col("text"),
        100,
        20,
        ['\n\n', '\n', '.', ' ', '']
    ).alias("chunks")
)
Source code in src/fenic/api/functions/text.py
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
@validate_call(config=ConfigDict(strict=True, arbitrary_types_allowed=True))
def recursive_word_chunk(
    column: ColumnOrName,
    chunk_size: int,
    chunk_overlap_percentage: int,
    chunking_character_set_custom_characters: Optional[list[str]] = None,
) -> Column:
    r"""Chunks a string column into chunks of a specified size (in words) with an optional overlap.

    The chunking is performed recursively, attempting to preserve the underlying structure of the text
    by splitting on natural boundaries (paragraph breaks, sentence breaks, etc.) to maintain context.
    By default, these characters are ['\n\n', '\n', '.', ';', ':', ' ', '-', ''], but this can be customized.

    Args:
        column: The input string column or column name to chunk
        chunk_size: The size of each chunk in words
        chunk_overlap_percentage: The overlap between each chunk as a percentage of the chunk size
        chunking_character_set_custom_characters (Optional): List of alternative characters to split on. Note that the characters should be ordered from coarsest to finest desired granularity -- earlier characters in the list should result in fewer overall splits than later characters.

    Returns:
        Column: A column containing the chunks as an array of strings

    Example: Default word chunking
        ```python
        # Create chunks of at most 100 words with 20% overlap
        df.select(
            text.recursive_word_chunk(col("text"), 100, 20).alias("chunks")
        )
        ```

    Example: Custom word chunking
        ```python
        # Create chunks with custom split characters
        df.select(
            text.recursive_word_chunk(
                col("text"),
                100,
                20,
                ['\n\n', '\n', '.', ' ', '']
            ).alias("chunks")
        )
        ```
    """
    if chunking_character_set_custom_characters is None:
        chunking_character_set_name = ChunkCharacterSet.ASCII
    else:
        chunking_character_set_name = ChunkCharacterSet.CUSTOM

    return Column._from_logical_expr(
        RecursiveTextChunkExpr(
            Column._from_col_or_name(column)._logical_expr,
            desired_chunk_size=chunk_size,
            chunk_overlap_percentage=chunk_overlap_percentage,
            chunk_length_function_name=ChunkLengthFunction.WORD,
            chunking_character_set_name=chunking_character_set_name,
            chunking_character_set_custom_characters=chunking_character_set_custom_characters,
        )
    )

regexp_replace

regexp_replace(src: ColumnOrName, pattern: Union[Column, str], replacement: Union[Column, str]) -> Column

Replace all occurrences of a pattern with a new string, treating pattern as a regular expression.

This method creates a new string column with all occurrences of the specified pattern replaced with a new string. The pattern is treated as a regular expression. If either pattern or replacement is a column expression, the operation is performed dynamically using the values from those columns.

Parameters:

  • src (ColumnOrName) –

    The input string column or column name to perform replacements on

  • pattern (Union[Column, str]) –

    The regular expression pattern to search for (can be a string or column expression)

  • replacement (Union[Column, str]) –

    The string to replace with (can be a string or column expression)

Returns:

  • Column ( Column ) –

    A column containing the strings with replacements applied

Replace digits with dashes
# Replace all digits with dashes
df.select(text.regexp_replace(col("text"), r"\d+", "--"))
Dynamic replacement using column values
# Replace using patterns from columns
df.select(text.regexp_replace(col("text"), col("pattern"), col("replacement")))
Complex pattern replacement
# Replace email addresses with [REDACTED]
df.select(text.regexp_replace(col("text"), r"[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}", "[REDACTED]"))
Source code in src/fenic/api/functions/text.py
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
@validate_call(config=ConfigDict(strict=True, arbitrary_types_allowed=True))
def regexp_replace(
    src: ColumnOrName,
    pattern: Union[Column, str],
    replacement: Union[Column, str],
) -> Column:
    r"""Replace all occurrences of a pattern with a new string, treating pattern as a regular expression.

    This method creates a new string column with all occurrences of the specified pattern
    replaced with a new string. The pattern is treated as a regular expression.
    If either pattern or replacement is a column expression, the operation is performed dynamically
    using the values from those columns.

    Args:
        src: The input string column or column name to perform replacements on
        pattern: The regular expression pattern to search for (can be a string or column expression)
        replacement: The string to replace with (can be a string or column expression)

    Returns:
        Column: A column containing the strings with replacements applied

    Example: Replace digits with dashes
        ```python
        # Replace all digits with dashes
        df.select(text.regexp_replace(col("text"), r"\d+", "--"))
        ```

    Example: Dynamic replacement using column values
        ```python
        # Replace using patterns from columns
        df.select(text.regexp_replace(col("text"), col("pattern"), col("replacement")))
        ```

    Example: Complex pattern replacement
        ```python
        # Replace email addresses with [REDACTED]
        df.select(text.regexp_replace(col("text"), r"[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}", "[REDACTED]"))
        ```
    """
    if isinstance(pattern, Column):
        pattern_expr = pattern._logical_expr
    else:
        pattern_expr = lit(pattern)._logical_expr
    if isinstance(replacement, Column):
        replacement_expr = replacement._logical_expr
    else:
        replacement_expr = lit(replacement)._logical_expr
    return Column._from_logical_expr(
        ReplaceExpr(
            Column._from_col_or_name(src)._logical_expr,
            pattern_expr,
            replacement_expr,
            False,
        )
    )

replace

replace(src: ColumnOrName, search: Union[Column, str], replace: Union[Column, str]) -> Column

Replace all occurrences of a pattern with a new string, treating pattern as a literal string.

This method creates a new string column with all occurrences of the specified pattern replaced with a new string. The pattern is treated as a literal string, not a regular expression. If either search or replace is a column expression, the operation is performed dynamically using the values from those columns.

Parameters:

  • src (ColumnOrName) –

    The input string column or column name to perform replacements on

  • search (Union[Column, str]) –

    The pattern to search for (can be a string or column expression)

  • replace (Union[Column, str]) –

    The string to replace with (can be a string or column expression)

Returns:

  • Column ( Column ) –

    A column containing the strings with replacements applied

Replace with literal string
# Replace all occurrences of "foo" in the "name" column with "bar"
df.select(text.replace(col("name"), "foo", "bar"))
Replace using column values
# Replace all occurrences of the value in the "search" column with the value in the "replace" column, for each row in the "text" column
df.select(text.replace(col("text"), col("search"), col("replace")))
Source code in src/fenic/api/functions/text.py
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
@validate_call(config=ConfigDict(strict=True, arbitrary_types_allowed=True))
def replace(
    src: ColumnOrName, search: Union[Column, str], replace: Union[Column, str]
) -> Column:
    """Replace all occurrences of a pattern with a new string, treating pattern as a literal string.

    This method creates a new string column with all occurrences of the specified pattern
    replaced with a new string. The pattern is treated as a literal string, not a regular expression.
    If either search or replace is a column expression, the operation is performed dynamically
    using the values from those columns.

    Args:
        src: The input string column or column name to perform replacements on
        search: The pattern to search for (can be a string or column expression)
        replace: The string to replace with (can be a string or column expression)

    Returns:
        Column: A column containing the strings with replacements applied

    Example: Replace with literal string
        ```python
        # Replace all occurrences of "foo" in the "name" column with "bar"
        df.select(text.replace(col("name"), "foo", "bar"))
        ```

    Example: Replace using column values
        ```python
        # Replace all occurrences of the value in the "search" column with the value in the "replace" column, for each row in the "text" column
        df.select(text.replace(col("text"), col("search"), col("replace")))
        ```
    """
    if isinstance(search, Column):
        search_expr = search._logical_expr
    else:
        search_expr = lit(search)._logical_expr
    if isinstance(replace, Column):
        replace_expr = replace._logical_expr
    else:
        replace_expr = lit(replace)._logical_expr
    return Column._from_logical_expr(
        ReplaceExpr(
            Column._from_col_or_name(src)._logical_expr, search_expr, replace_expr, True
        )
    )

rtrim

rtrim(col: ColumnOrName) -> Column

Remove whitespace from the end of strings in a column.

This function removes all whitespace characters (spaces, tabs, newlines) from the end of each string in the column.

Parameters:

  • col (ColumnOrName) –

    The input string column or column name to trim

Returns:

  • Column ( Column ) –

    A column containing the right-trimmed strings

Remove trailing whitespace
# Remove whitespace from the end of text
df.select(text.rtrim(col("text")))
Source code in src/fenic/api/functions/text.py
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
@validate_call(config=ConfigDict(strict=True, arbitrary_types_allowed=True))
def rtrim(col: ColumnOrName) -> Column:
    """Remove whitespace from the end of strings in a column.

    This function removes all whitespace characters (spaces, tabs, newlines) from
    the end of each string in the column.

    Args:
        col: The input string column or column name to trim

    Returns:
        Column: A column containing the right-trimmed strings

    Example: Remove trailing whitespace
        ```python
        # Remove whitespace from the end of text
        df.select(text.rtrim(col("text")))
        ```
    """
    return Column._from_logical_expr(
        StripCharsExpr(Column._from_col_or_name(col)._logical_expr, None, "right")
    )

split

split(src: ColumnOrName, pattern: str, limit: int = -1) -> Column

Split a string column into an array using a regular expression pattern.

This method creates an array column by splitting each value in the input string column at matches of the specified regular expression pattern.

Parameters:

  • src (ColumnOrName) –

    The input string column or column name to split

  • pattern (str) –

    The regular expression pattern to split on

  • limit (int, default: -1 ) –

    Maximum number of splits to perform (Default: -1 for unlimited). If > 0, returns at most limit+1 elements, with remainder in last element.

Returns:

  • Column ( Column ) –

    A column containing arrays of substrings

Split on whitespace
# Split on whitespace
df.select(text.split(col("text"), r"\s+"))
Split with limit
# Split on whitespace, max 2 splits
df.select(text.split(col("text"), r"\s+", limit=2))
Source code in src/fenic/api/functions/text.py
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
@validate_call(config=ConfigDict(strict=True, arbitrary_types_allowed=True))
def split(src: ColumnOrName, pattern: str, limit: int = -1) -> Column:
    r"""Split a string column into an array using a regular expression pattern.

    This method creates an array column by splitting each value in the input string column
    at matches of the specified regular expression pattern.

    Args:
        src: The input string column or column name to split
        pattern: The regular expression pattern to split on
        limit: Maximum number of splits to perform (Default: -1 for unlimited).
              If > 0, returns at most limit+1 elements, with remainder in last element.

    Returns:
        Column: A column containing arrays of substrings

    Example: Split on whitespace
        ```python
        # Split on whitespace
        df.select(text.split(col("text"), r"\s+"))
        ```

    Example: Split with limit
        ```python
        # Split on whitespace, max 2 splits
        df.select(text.split(col("text"), r"\s+", limit=2))
        ```
    """
    return Column._from_logical_expr(
        RegexpSplitExpr(Column._from_col_or_name(src)._logical_expr, pattern, limit)
    )

split_part

split_part(src: ColumnOrName, delimiter: Union[Column, str], part_number: Union[Column, int]) -> Column

Split a string and return a specific part using 1-based indexing.

Splits each string by a delimiter and returns the specified part. If the delimiter is a column expression, the split operation is performed dynamically using the delimiter values from that column.

Behavior: - If any input is null, returns null - If part_number is out of range of split parts, returns empty string - If part_number is 0, throws an error - If part_number is negative, counts from the end of the split parts - If the delimiter is an empty string, the string is not split

Parameters:

  • src (ColumnOrName) –

    The input string column or column name to split

  • delimiter (Union[Column, str]) –

    The delimiter to split on (can be a string or column expression)

  • part_number (Union[Column, int]) –

    Which part to return (1-based integer index or column expression)

Returns:

  • Column ( Column ) –

    A column containing the specified part from each split string

Get second part of comma-separated values
# Get second part of comma-separated values
df.select(text.split_part(col("text"), ",", 2))
Get last part using negative index
# Get last part using negative index
df.select(text.split_part(col("text"), ",", -1))
Use dynamic delimiter from column
# Use dynamic delimiter from column
df.select(text.split_part(col("text"), col("delimiter"), 1))
Source code in src/fenic/api/functions/text.py
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
@validate_call(config=ConfigDict(strict=True, arbitrary_types_allowed=True))
def split_part(
    src: ColumnOrName, delimiter: Union[Column, str], part_number: Union[Column, int]
) -> Column:
    """Split a string and return a specific part using 1-based indexing.

    Splits each string by a delimiter and returns the specified part.
    If the delimiter is a column expression, the split operation is performed dynamically
    using the delimiter values from that column.

    Behavior:
    - If any input is null, returns null
    - If part_number is out of range of split parts, returns empty string
    - If part_number is 0, throws an error
    - If part_number is negative, counts from the end of the split parts
    - If the delimiter is an empty string, the string is not split

    Args:
        src: The input string column or column name to split
        delimiter: The delimiter to split on (can be a string or column expression)
        part_number: Which part to return (1-based integer index or column expression)

    Returns:
        Column: A column containing the specified part from each split string

    Example: Get second part of comma-separated values
        ```python
        # Get second part of comma-separated values
        df.select(text.split_part(col("text"), ",", 2))
        ```

    Example: Get last part using negative index
        ```python
        # Get last part using negative index
        df.select(text.split_part(col("text"), ",", -1))
        ```

    Example: Use dynamic delimiter from column
        ```python
        # Use dynamic delimiter from column
        df.select(text.split_part(col("text"), col("delimiter"), 1))
        ```
    """
    if isinstance(part_number, int) and part_number == 0:
        raise ValidationError(
            f"`split_part` expects a non-zero integer for the part_number, but got {part_number}."
        )
    if isinstance(part_number, Column):
        part_number_expr = part_number._logical_expr
    else:
        part_number_expr = lit(part_number)._logical_expr

    if isinstance(delimiter, Column):
        delimiter_expr = delimiter._logical_expr
    else:
        delimiter_expr = lit(delimiter)._logical_expr

    return Column._from_logical_expr(
        SplitPartExpr(
            Column._from_col_or_name(src)._logical_expr, delimiter_expr, part_number_expr
        )
    )

title_case

title_case(column: ColumnOrName) -> Column

Convert the first character of each word in a string column to uppercase.

Parameters:

  • column (ColumnOrName) –

    The input string column to convert to title case

Returns:

  • Column ( Column ) –

    A column containing the title case strings

Convert text to title case
# Convert text in the name column to title case
df.select(text.title_case(col("name")))
Source code in src/fenic/api/functions/text.py
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
@validate_call(config=ConfigDict(strict=True, arbitrary_types_allowed=True))
def title_case(column: ColumnOrName) -> Column:
    """Convert the first character of each word in a string column to uppercase.

    Args:
        column: The input string column to convert to title case

    Returns:
        Column: A column containing the title case strings

    Example: Convert text to title case
        ```python
        # Convert text in the name column to title case
        df.select(text.title_case(col("name")))
        ```
    """
    return Column._from_logical_expr(
        StringCasingExpr(Column._from_col_or_name(column)._logical_expr, "title")
    )

token_chunk

token_chunk(column: ColumnOrName, chunk_size: int, chunk_overlap_percentage: int = 0) -> Column

Chunks a string column into chunks of a specified size (in tokens) with an optional overlap.

The chunking is done by applying a simple sliding window across the text to create chunks of equal size. This approach does not attempt to preserve the underlying structure of the text.

Parameters:

  • column (ColumnOrName) –

    The input string column or column name to chunk

  • chunk_size (int) –

    The size of each chunk in tokens

  • chunk_overlap_percentage (int, default: 0 ) –

    The overlap between chunks as a percentage of the chunk size (Default: 0)

Returns:

  • Column ( Column ) –

    A column containing the chunks as an array of strings

Create token chunks
# Create chunks of 100 tokens with 20% overlap
df.select(text.token_chunk(col("text"), 100, 20))
Source code in src/fenic/api/functions/text.py
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
@validate_call(config=ConfigDict(strict=True, arbitrary_types_allowed=True))
def token_chunk(
    column: ColumnOrName, chunk_size: int, chunk_overlap_percentage: int = 0
) -> Column:
    """Chunks a string column into chunks of a specified size (in tokens) with an optional overlap.

    The chunking is done by applying a simple sliding window across the text to create chunks of equal size.
    This approach does not attempt to preserve the underlying structure of the text.

    Args:
        column: The input string column or column name to chunk
        chunk_size: The size of each chunk in tokens
        chunk_overlap_percentage: The overlap between chunks as a percentage of the chunk size (Default: 0)

    Returns:
        Column: A column containing the chunks as an array of strings

    Example: Create token chunks
        ```python
        # Create chunks of 100 tokens with 20% overlap
        df.select(text.token_chunk(col("text"), 100, 20))
        ```
    """
    return Column._from_logical_expr(
        TextChunkExpr(
            Column._from_col_or_name(column)._logical_expr,
            desired_chunk_size=chunk_size,
            chunk_overlap_percentage=chunk_overlap_percentage,
            chunk_length_function_name=ChunkLengthFunction.TOKEN,
        )
    )

trim

trim(column: ColumnOrName) -> Column

Remove whitespace from both sides of strings in a column.

This function removes all whitespace characters (spaces, tabs, newlines) from both the beginning and end of each string in the column.

Parameters:

  • column (ColumnOrName) –

    The input string column or column name to trim

Returns:

  • Column ( Column ) –

    A column containing the trimmed strings

Remove whitespace from both sides
# Remove whitespace from both sides of text
df.select(text.trim(col("text")))
Source code in src/fenic/api/functions/text.py
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
@validate_call(config=ConfigDict(strict=True, arbitrary_types_allowed=True))
def trim(column: ColumnOrName) -> Column:
    """Remove whitespace from both sides of strings in a column.

    This function removes all whitespace characters (spaces, tabs, newlines) from
    both the beginning and end of each string in the column.

    Args:
        column: The input string column or column name to trim

    Returns:
        Column: A column containing the trimmed strings

    Example: Remove whitespace from both sides
        ```python
        # Remove whitespace from both sides of text
        df.select(text.trim(col("text")))
        ```
    """
    return Column._from_logical_expr(
        StripCharsExpr(Column._from_col_or_name(column)._logical_expr, None, "both")
    )

upper

upper(column: ColumnOrName) -> Column

Convert all characters in a string column to uppercase.

Parameters:

  • column (ColumnOrName) –

    The input string column to convert to uppercase

Returns:

  • Column ( Column ) –

    A column containing the uppercase strings

Convert text to uppercase
# Convert all text in the name column to uppercase
df.select(text.upper(col("name")))
Source code in src/fenic/api/functions/text.py
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
@validate_call(config=ConfigDict(strict=True, arbitrary_types_allowed=True))
def upper(column: ColumnOrName) -> Column:
    """Convert all characters in a string column to uppercase.

    Args:
        column: The input string column to convert to uppercase

    Returns:
        Column: A column containing the uppercase strings

    Example: Convert text to uppercase
        ```python
        # Convert all text in the name column to uppercase
        df.select(text.upper(col("name")))
        ```
    """
    return Column._from_logical_expr(
        StringCasingExpr(Column._from_col_or_name(column)._logical_expr, "upper")
    )

word_chunk

word_chunk(column: ColumnOrName, chunk_size: int, chunk_overlap_percentage: int = 0) -> Column

Chunks a string column into chunks of a specified size (in words) with an optional overlap.

The chunking is done by applying a simple sliding window across the text to create chunks of equal size. This approach does not attempt to preserve the underlying structure of the text.

Parameters:

  • column (ColumnOrName) –

    The input string column or column name to chunk

  • chunk_size (int) –

    The size of each chunk in words

  • chunk_overlap_percentage (int, default: 0 ) –

    The overlap between chunks as a percentage of the chunk size (Default: 0)

Returns:

  • Column ( Column ) –

    A column containing the chunks as an array of strings

Create word chunks
# Create chunks of 100 words with 20% overlap
df.select(text.word_chunk(col("text"), 100, 20))
Source code in src/fenic/api/functions/text.py
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
@validate_call(config=ConfigDict(strict=True, arbitrary_types_allowed=True))
def word_chunk(
    column: ColumnOrName, chunk_size: int, chunk_overlap_percentage: int = 0
) -> Column:
    """Chunks a string column into chunks of a specified size (in words) with an optional overlap.

    The chunking is done by applying a simple sliding window across the text to create chunks of equal size.
    This approach does not attempt to preserve the underlying structure of the text.

    Args:
        column: The input string column or column name to chunk
        chunk_size: The size of each chunk in words
        chunk_overlap_percentage: The overlap between chunks as a percentage of the chunk size (Default: 0)

    Returns:
        Column: A column containing the chunks as an array of strings

    Example: Create word chunks
        ```python
        # Create chunks of 100 words with 20% overlap
        df.select(text.word_chunk(col("text"), 100, 20))
        ```
    """
    return Column._from_logical_expr(
        TextChunkExpr(
            Column._from_col_or_name(column)._logical_expr,
            desired_chunk_size=chunk_size,
            chunk_overlap_percentage=chunk_overlap_percentage,
            chunk_length_function_name=ChunkLengthFunction.WORD,
        )
    )