fenic.api.functions.semantic
Semantic functions for Fenic DataFrames - LLM-based operations.
Functions:
-
analyze_sentiment
–Analyzes the sentiment of a string column. Returns one of 'positive', 'negative', or 'neutral'.
-
classify
–Classifies a string column into one of the provided classes.
-
embed
–Generate embeddings for the specified string column.
-
extract
–Extracts structured information from unstructured text using a provided Pydantic model schema.
-
map
–Applies a generation prompt to one or more columns, enabling rich summarization and generation tasks.
-
predicate
–Applies a boolean predicate to one or more columns, typically used for filtering.
-
reduce
–Aggregate function: reduces a set of strings in a column to a single string using a natural language instruction.
-
summarize
–Summarizes strings from a column.
analyze_sentiment
analyze_sentiment(column: ColumnOrName, model_alias: Optional[Union[str, ModelAlias]] = None, temperature: float = 0) -> Column
Analyzes the sentiment of a string column. Returns one of 'positive', 'negative', or 'neutral'.
Parameters:
-
column
(ColumnOrName
) –Column or column name containing text for sentiment analysis.
-
model_alias
(Optional[Union[str, ModelAlias]]
, default:None
) –Optional alias for the language model to use for the mapping. If None, will use the language model configured as the default.
-
temperature
(float
, default:0
) –Optional temperature parameter for the language model. If None, will use the default temperature (0.0).
Returns:
-
Column
(Column
) –Expression containing sentiment results ('positive', 'negative', or 'neutral').
Raises:
-
ValueError
–If column is invalid or cannot be resolved.
Analyzing the sentiment of a user comment
semantic.analyze_sentiment(col('user_comment'))
Source code in src/fenic/api/functions/semantic.py
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 |
|
classify
classify(column: ColumnOrName, classes: Union[List[str], List[ClassDefinition]], examples: Optional[ClassifyExampleCollection] = None, model_alias: Optional[Union[str, ModelAlias]] = None, temperature: float = 0) -> Column
Classifies a string column into one of the provided classes.
This is useful for tagging incoming documents with predefined categories.
Parameters:
-
column
(ColumnOrName
) –Column or column name containing text to classify.
-
classes
(Union[List[str], List[ClassDefinition]]
) –List of class labels or ClassDefinition objects defining the available classes. Use ClassDefinition objects to provide descriptions for the classes.
-
examples
(Optional[ClassifyExampleCollection]
, default:None
) –Optional collection of example classifications to guide the model. Examples should be created using ClassifyExampleCollection.create_example(), with instruction variables mapped to their expected classifications.
-
model_alias
(Optional[Union[str, ModelAlias]]
, default:None
) –Optional alias for the language model to use for the mapping. If None, will use the language model configured as the default.
-
temperature
(float
, default:0
) –Optional temperature parameter for the language model. If None, will use the default temperature (0.0).
Returns:
-
Column
(Column
) –Expression containing the classification results.
Raises:
-
ValueError
–If column is invalid or classes is empty or has duplicate labels.
Categorizing incoming support requests
# Categorize incoming support requests
semantic.classify("message", ["Account Access", "Billing Issue", "Technical Problem"])
Categorizing incoming support requests using ClassDefinition objects
# Categorize incoming support requests
semantic.classify("message", [
ClassDefinition(label="Account Access", description="General questions, feature requests, or non-technical assistance"),
ClassDefinition(label="Billing Issue", description="Questions about charges, payments, subscriptions, or account billing"),
ClassDefinition(label="Technical Problem", description="Problems with product functionality, bugs, or technical difficulties")
])
Categorizing incoming support requests with ClassDefinition objects and examples
examples = ClassifyExampleCollection()
class_definitions = [
ClassDefinition(label="Account Access", description="General questions, feature requests, or non-technical assistance"),
ClassDefinition(label="Billing Issue", description="Questions about charges, payments, subscriptions, or account billing"),
ClassDefinition(label="Technical Problem", description="Problems with product functionality, bugs, or technical difficulties")
]
examples.create_example(ClassifyExample(
input="I can't reset my password or access my account.",
output="Account Access"))
examples.create_example(ClassifyExample(
input="You charged me twice for the same month.",
output="Billing Issue"))
semantic.classify("message", class_definitions, examples)
Source code in src/fenic/api/functions/semantic.py
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 |
|
embed
embed(column: ColumnOrName, model_alias: Optional[Union[str, ModelAlias]] = None) -> Column
Generate embeddings for the specified string column.
Parameters:
-
column
(ColumnOrName
) –Column or column name containing the values to generate embeddings for.
-
model_alias
(Optional[Union[str, ModelAlias]]
, default:None
) –Optional alias for the embedding model to use for the mapping. If None, will use the embedding model configured as the default.
Returns:
-
Column
–A Column expression that represents the embeddings for each value in the input column
Raises:
-
TypeError
–If the input column is not a string column.
Generate embeddings for a text column
df.select(semantic.embed(col("text_column")).alias("text_embeddings"))
Source code in src/fenic/api/functions/semantic.py
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 |
|
extract
extract(column: ColumnOrName, response_format: type[BaseModel], max_output_tokens: int = 1024, temperature: float = 0.0, model_alias: Optional[Union[str, ModelAlias]] = None) -> Column
Extracts structured information from unstructured text using a provided Pydantic model schema.
This function applies an instruction-driven extraction process to text columns, returning structured data based on the fields and descriptions provided. Useful for pulling out key entities, facts, or labels from documents.
The schema must be a valid Pydantic model type with supported field types. These include:
- Primitive types:
str
,int
,float
,bool
- Optional fields:
Optional[T]
whereT
is a supported type - Lists:
List[T]
whereT
is a supported type - Literals:
Literal[...
] (for enum-like constraints) - Nested Pydantic models (recursive schemas are supported, but must be JSON-serializable and acyclic)
Unsupported types (e.g., unions, custom classes, runtime circular references, or complex generics) will raise errors at runtime.
Parameters:
-
column
(ColumnOrName
) –Column containing text to extract from.
-
response_format
(type[BaseModel]
) –A Pydantic model type that defines the output structure with descriptions for each field.
-
model_alias
(Optional[Union[str, ModelAlias]]
, default:None
) –Optional alias for the language model to use for the extraction. If None, will use the language model configured as the default.
-
temperature
(float
, default:0.0
) –Optional temperature parameter for the language model. If None, will use the default temperature (0.0).
-
max_output_tokens
(int
, default:1024
) –Optional parameter to constrain the model to generate at most this many tokens. If None, fenic will calculate the expected max tokens, based on the model's context length and other operator-specific parameters.
Returns:
-
Column
(Column
) –A new column with structured values (a struct) based on the provided schema.
Extracting knowledge graph triples and named entities from text
class Triple(BaseModel):
subject: str = Field(description="The subject of the triple")
predicate: str = Field(description="The predicate or relation")
object: str = Field(description="The object of the triple")
class KGResult(BaseModel):
triples: List[Triple] = Field(description="List of extracted knowledge graph triples")
entities: list[str] = Field(description="Flat list of all detected named entities")
df.select(semantic.extract("blurb", KGResult))
Source code in src/fenic/api/functions/semantic.py
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
|
map
map(prompt: str, /, *, strict: bool = True, examples: Optional[MapExampleCollection] = None, response_format: Optional[type[BaseModel]] = None, model_alias: Optional[Union[str, ModelAlias]] = None, temperature: float = 0.0, max_output_tokens: int = 512, **columns: Column) -> Column
Applies a generation prompt to one or more columns, enabling rich summarization and generation tasks.
Parameters:
-
prompt
(str
) –A Jinja2 template for the generation prompt. References column values using {{ column_name }} syntax. Each placeholder is replaced with the corresponding value from the current row during execution.
-
strict
(bool
, default:True
) –If True, when any of the provided columns has a None value for a row, the entire row's output will be None (template is not rendered). If False, None values are handled using Jinja2's null rendering behavior. Default is True.
-
examples
(Optional[MapExampleCollection]
, default:None
) –Optional few-shot examples to guide the model's output format and style.
-
response_format
(Optional[type[BaseModel]]
, default:None
) –Optional Pydantic model to enforce structured output. Must include descriptions for each field.
-
model_alias
(Optional[Union[str, ModelAlias]]
, default:None
) –Optional language model alias. If None, uses the default model.
-
temperature
(float
, default:0.0
) –Language model temperature (default: 0.0).
-
max_output_tokens
(int
, default:512
) –Maximum tokens to generate (default: 512).
-
**columns
(Column
, default:{}
) –Named column arguments that correspond to template variables. Keys must match the variable names used in the template.
Returns:
-
Column
(Column
) –A column expression representing the semantic mapping operation.
Mapping without examples
fc.semantic.map(
"Write a compelling one-line description for {{ name }}: {{ details }}",
name=fc.col("name"),
details=fc.col("details")
)
Mapping with few-shot examples
examples = MapExampleCollection()
examples.create_example(MapExample(
input={"name": "GlowMate", "details": "A rechargeable bedside lamp with adjustable color temperatures, touch controls, and a sleek minimalist design."},
output="The modern touch-controlled lamp for better sleep and style."
))
examples.create_example(MapExample(
input={"name": "AquaPure", "details": "A compact water filter that attaches to your faucet, removes over 99% of contaminants, and improves taste instantly."},
output="Clean, great-tasting water straight from your tap."
))
fc.semantic.map(
"Write a compelling one-line description for {{ name }}: {{ details }}",
name=fc.col("name"),
details=fc.col("details"),
examples=examples
)
Source code in src/fenic/api/functions/semantic.py
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
|
predicate
predicate(predicate: str, /, *, strict: bool = True, examples: Optional[PredicateExampleCollection] = None, model_alias: Optional[Union[str, ModelAlias]] = None, temperature: float = 0.0, **columns: Column) -> Column
Applies a boolean predicate to one or more columns, typically used for filtering.
Parameters:
-
predicate
(str
) –A Jinja2 template containing a yes/no question or boolean claim. Should reference column values using {{ column_name }} syntax. The model will evaluate this condition for each row and return True or False.
-
strict
(bool
, default:True
) –If True, when any of the provided columns has a None value for a row, the entire row's output will be None (template is not rendered). If False, None values are handled using Jinja2's null rendering behavior. Default is True.
-
examples
(Optional[PredicateExampleCollection]
, default:None
) –Optional few-shot examples showing how to evaluate the predicate. Helps ensure consistent True/False decisions.
-
model_alias
(Optional[Union[str, ModelAlias]]
, default:None
) –Optional language model alias. If None, uses the default model.
-
temperature
(float
, default:0.0
) –Language model temperature (default: 0.0).
-
**columns
(Column
, default:{}
) –Named column arguments that correspond to template variables. Keys must match the variable names used in the template.
Returns:
-
Column
(Column
) –A boolean column expression.
Filtering product descriptions
wireless_products = df.filter(
fc.semantic.predicate(
dedent('''\
Product: {{ description }}
Is this product wireless or battery-powered?'''),
description=fc.col("product_description")
)
)
Filtering support tickets
df = df.with_column(
"is_urgent",
fc.semantic.predicate(
dedent('''\
Subject: {{ subject }}
Body: {{ body }}
This ticket indicates an urgent issue.'''),
subject=fc.col("ticket_subject"),
body=fc.col("ticket_body")
)
)
Filtering with examples
examples = PredicateExampleCollection()
examples.create_example(PredicateExample(
input={"ticket": "I was charged twice for my subscription and need help."},
output=True
))
examples.create_example(PredicateExample(
input={"ticket": "How do I reset my password?"},
output=False
))
fc.semantic.predicate(
dedent('''\
Ticket: {{ ticket }}
This ticket is about billing.'''),
ticket=fc.col("ticket_text"),
examples=examples
)
Source code in src/fenic/api/functions/semantic.py
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
|
reduce
reduce(prompt: str, column: ColumnOrName, *, group_context: Optional[Dict[str, Column]] = None, order_by: List[ColumnOrName] = None, model_alias: Optional[Union[str, ModelAlias]] = None, temperature: float = 0, max_output_tokens: int = 512) -> Column
Aggregate function: reduces a set of strings in a column to a single string using a natural language instruction.
Parameters:
-
prompt
(str
) –A string containing the semantic.reduce prompt. The instruction can optionally include Jinja2 template variables (e.g., {{variable}}) that reference columns from the group_context parameter. These will be replaced with actual values from the first row of each group during execution.
-
column
(ColumnOrName
) –The column containing documents/strings to reduce.
-
group_context
(Optional[Dict[str, Column]]
, default:None
) –Optional dictionary mapping variable names to columns. These columns provide context for each group and can be referenced in the instruction template.
-
order_by
(List[ColumnOrName]
, default:None
) –Optional list of columns to sort grouped documents by before reduction. Documents are processed in ascending order by default if no sort function is provided. Use a sort function (e.g., col("date").desc()/fc.desc("date")) for descending order. The order_by columns help preserve the temporal/logical sequence of the documents (e.g chunks in a document, speaker turns in a meeting transcript) for more coherent summaries.
-
model_alias
(Optional[Union[str, ModelAlias]]
, default:None
) –Optional alias for the language model to use. If None, uses the default model.
-
temperature
(float
, default:0
) –Temperature parameter for the language model (default: 0.0).
-
max_output_tokens
(int
, default:512
) –Maximum tokens the model can generate (default: 512).
Returns:
-
Column
(Column
) –A column expression representing the semantic reduction operation.
Simple reduction
# Simple reduction
df.group_by("category").agg(
semantic.reduce("Summarize the documents", col("document_text"))
)
With group context
df.group_by("department", "region").agg(
semantic.reduce(
"Summarize these {{department}} reports from {{region}}",
col("document_text"),
group_context={
"department": col("department"),
"region": col("region")
}
)
)
With sorting
df.group_by("category").agg(
semantic.reduce(
"Summarize the documents",
col("document_text"),
order_by=col("date")
)
)
Source code in src/fenic/api/functions/semantic.py
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 |
|
summarize
summarize(column: ColumnOrName, format: Union[KeyPoints, Paragraph, None] = None, temperature: float = 0, model_alias: Optional[Union[str, ModelAlias]] = None) -> Column
Summarizes strings from a column.
Parameters:
-
column
(ColumnOrName
) –Column or column name containing text for summarization
-
format
(Union[KeyPoints, Paragraph, None]
, default:None
) –Format of the summary to generate. Can be either KeyPoints or Paragraph. If None, will default to Paragraph with a maximum of 120 words.
-
temperature
(float
, default:0
) –Optional temperature parameter for the language model. If None, will use the default temperature (0.0).
-
model_alias
(Optional[Union[str, ModelAlias]]
, default:None
) –Optional alias for the language model to use for the summarization. If None, will use the language model configured as the default.
Returns:
-
Column
(Column
) –Expression containing the summarized string
Raises: ValueError: If column is invalid or cannot be resolved.
Example
semantic.summarize(col('user_comment')).
Source code in src/fenic/api/functions/semantic.py
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 |
|