fenic.api.functions
Functions for working with DataFrame columns.
Functions:
-
array
–Creates a new array column from multiple input columns.
-
array_agg
–Alias for collect_list().
-
array_contains
–Checks if array column contains a specific value.
-
array_size
–Returns the number of elements in an array column.
-
asc
–Mark this column for ascending sort order with nulls first.
-
asc_nulls_first
–Alias for asc().
-
asc_nulls_last
–Mark this column for ascending sort order with nulls last.
-
avg
–Aggregate function: returns the average (mean) of all values in the specified column. Applies to numeric and embedding types.
-
coalesce
–Returns the first non-null value from the given columns for each row.
-
col
–Creates a Column expression referencing a column in the DataFrame.
-
collect_list
–Aggregate function: collects all values from the specified column into a list.
-
count
–Aggregate function: returns the count of non-null values in the specified column.
-
desc
–Mark this column for descending sort order with nulls first.
-
desc_nulls_first
–Alias for desc().
-
desc_nulls_last
–Mark this column for descending sort order with nulls last.
-
first
–Aggregate function: returns the first non-null value in the specified column.
-
greatest
–Returns the greatest value from the given columns for each row.
-
least
–Returns the least value from the given columns for each row.
-
lit
–Creates a Column expression representing a literal value.
-
max
–Aggregate function: returns the maximum value in the specified column.
-
mean
–Aggregate function: returns the mean (average) of all values in the specified column.
-
min
–Aggregate function: returns the minimum value in the specified column.
-
stddev
–Aggregate function: returns the sample standard deviation of the specified column.
-
struct
–Creates a new struct column from multiple input columns.
-
sum
–Aggregate function: returns the sum of all values in the specified column.
-
udf
–A decorator or function for creating user-defined functions (UDFs) that can be applied to DataFrame rows.
-
when
–Evaluates a condition and returns a value if true.
array
array(*args: Union[ColumnOrName, List[ColumnOrName], Tuple[ColumnOrName, ...]]) -> Column
Creates a new array column from multiple input columns.
Parameters:
-
*args
(Union[ColumnOrName, List[ColumnOrName], Tuple[ColumnOrName, ...]]
, default:()
) –Columns or column names to combine into an array. Can be:
- Individual arguments
- Lists of columns/column names
- Tuples of columns/column names
Returns:
-
Column
–A Column expression representing an array containing values from the input columns
Raises:
-
TypeError
–If any argument is not a Column, string, or collection of Columns/strings
Source code in src/fenic/api/functions/builtin.py
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
|
array_agg
array_agg(column: ColumnOrName) -> Column
Alias for collect_list().
Source code in src/fenic/api/functions/builtin.py
165 166 167 168 |
|
array_contains
array_contains(column: ColumnOrName, value: Union[str, int, float, bool, Column]) -> Column
Checks if array column contains a specific value.
This function returns True if the array in the specified column contains the given value, and False otherwise. Returns False if the array is None.
Parameters:
-
column
(ColumnOrName
) –Column or column name containing the arrays to check.
-
value
(Union[str, int, float, bool, Column]
) –Value to search for in the arrays. Can be: - A literal value (string, number, boolean) - A Column expression
Returns:
-
Column
–A boolean Column expression (True if value is found, False otherwise).
Raises:
-
TypeError
–If value type is incompatible with the array element type.
-
TypeError
–If the column does not contain array data.
Check for values in arrays
# Check if 'python' exists in arrays in the 'tags' column
df.select(array_contains("tags", "python"))
# Check using a value from another column
df.select(array_contains("tags", col("search_term")))
Source code in src/fenic/api/functions/builtin.py
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 |
|
array_size
array_size(column: ColumnOrName) -> Column
Returns the number of elements in an array column.
This function computes the length of arrays stored in the specified column. Returns None for None arrays.
Parameters:
-
column
(ColumnOrName
) –Column or column name containing arrays whose length to compute.
Returns:
-
Column
–A Column expression representing the array length.
Raises:
-
TypeError
–If the column does not contain array data.
Get array sizes
# Get the size of arrays in 'tags' column
df.select(array_size("tags"))
# Use with column reference
df.select(array_size(col("tags")))
Source code in src/fenic/api/functions/builtin.py
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 |
|
asc
asc(column: ColumnOrName) -> Column
Mark this column for ascending sort order with nulls first.
Parameters:
-
column
(ColumnOrName
) –The column to apply the ascending ordering to.
Returns:
-
Column
–A sort expression with ascending order and nulls first.
Source code in src/fenic/api/functions/builtin.py
317 318 319 320 321 322 323 324 325 326 327 |
|
asc_nulls_first
asc_nulls_first(column: ColumnOrName) -> Column
Alias for asc().
Parameters:
-
column
(ColumnOrName
) –The column to apply the ascending ordering to.
Returns:
-
Column
–A sort expression with ascending order and nulls first.
Source code in src/fenic/api/functions/builtin.py
330 331 332 333 334 335 336 337 338 339 340 |
|
asc_nulls_last
asc_nulls_last(column: ColumnOrName) -> Column
Mark this column for ascending sort order with nulls last.
Parameters:
-
column
(ColumnOrName
) –The column to apply the ascending ordering to.
Returns:
-
Column
–A Column expression representing the column and the ascending sort order with nulls last.
Source code in src/fenic/api/functions/builtin.py
343 344 345 346 347 348 349 350 351 352 353 |
|
avg
avg(column: ColumnOrName) -> Column
Aggregate function: returns the average (mean) of all values in the specified column. Applies to numeric and embedding types.
Parameters:
-
column
(ColumnOrName
) –Column or column name to compute the average of
Returns:
-
Column
–A Column expression representing the average aggregation
Raises:
-
TypeError
–If column is not a Column or string
Source code in src/fenic/api/functions/builtin.py
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
|
coalesce
coalesce(*cols: ColumnOrName) -> Column
Returns the first non-null value from the given columns for each row.
This function mimics the behavior of SQL's COALESCE function. It evaluates the input columns in order and returns the first non-null value encountered. If all values are null, returns null.
Parameters:
-
*cols
(ColumnOrName
, default:()
) –Column expressions or column names to evaluate. Each argument should be a single column expression or column name string.
Returns:
-
Column
–A Column expression containing the first non-null value from the input columns.
Raises:
-
ValidationError
–If no columns are provided.
coalesce usage
df.select(coalesce("col1", "col2", "col3"))
Source code in src/fenic/api/functions/builtin.py
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 |
|
col
col(col_name: str) -> Column
Creates a Column expression referencing a column in the DataFrame.
Parameters:
-
col_name
(str
) –Name of the column to reference
Returns:
-
Column
–A Column expression for the specified column
Raises:
-
TypeError
–If colName is not a string
Source code in src/fenic/api/functions/core.py
16 17 18 19 20 21 22 23 24 25 26 27 28 29 |
|
collect_list
collect_list(column: ColumnOrName) -> Column
Aggregate function: collects all values from the specified column into a list.
Parameters:
-
column
(ColumnOrName
) –Column or column name to collect values from
Returns:
-
Column
–A Column expression representing the list aggregation
Raises:
-
TypeError
–If column is not a Column or string
Source code in src/fenic/api/functions/builtin.py
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
|
count
count(column: ColumnOrName) -> Column
Aggregate function: returns the count of non-null values in the specified column.
Parameters:
-
column
(ColumnOrName
) –Column or column name to count values in
Returns:
-
Column
–A Column expression representing the count aggregation
Raises:
-
TypeError
–If column is not a Column or string
Source code in src/fenic/api/functions/builtin.py
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
|
desc
desc(column: ColumnOrName) -> Column
Mark this column for descending sort order with nulls first.
Parameters:
-
column
(ColumnOrName
) –The column to apply the descending ordering to.
Returns:
-
Column
–A sort expression with descending order and nulls first.
Source code in src/fenic/api/functions/builtin.py
356 357 358 359 360 361 362 363 364 365 366 |
|
desc_nulls_first
desc_nulls_first(column: ColumnOrName) -> Column
Alias for desc().
Parameters:
-
column
(ColumnOrName
) –The column to apply the descending ordering to.
Returns:
-
Column
–A sort expression with descending order and nulls first.
Source code in src/fenic/api/functions/builtin.py
369 370 371 372 373 374 375 376 377 378 379 |
|
desc_nulls_last
desc_nulls_last(column: ColumnOrName) -> Column
Mark this column for descending sort order with nulls last.
Parameters:
-
column
(ColumnOrName
) –The column to apply the descending ordering to.
Returns:
-
Column
–A sort expression with descending order and nulls last.
Source code in src/fenic/api/functions/builtin.py
382 383 384 385 386 387 388 389 390 391 392 |
|
first
first(column: ColumnOrName) -> Column
Aggregate function: returns the first non-null value in the specified column.
Typically used in aggregations to select the first observed value per group.
Parameters:
-
column
(ColumnOrName
) –Column or column name.
Returns:
-
Column
–Column expression for the first value.
Source code in src/fenic/api/functions/builtin.py
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
|
greatest
greatest(*cols: ColumnOrName) -> Column
Returns the greatest value from the given columns for each row.
This function mimics the behavior of SQL's GREATEST function. It evaluates the input columns in order and returns the greatest value encountered. If all values are null, returns null.
All arguments must be of the same primitive type (e.g., StringType, BooleanType, FloatType, IntegerType, etc).
Parameters:
-
*cols
(ColumnOrName
, default:()
) –Column expressions or column names to evaluate. Each argument should be a single column expression or column name string.
Returns:
-
Column
–A Column expression containing the greatest value from the input columns.
Raises:
-
ValidationError
–If fewer than two columns are provided.
greatest usage
df.select(fc.greatest("col1", "col2", "col3"))
Source code in src/fenic/api/functions/builtin.py
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 |
|
least
least(*cols: ColumnOrName) -> Column
Returns the least value from the given columns for each row.
This function mimics the behavior of SQL's LEAST function. It evaluates the input columns in order and returns the least value encountered. If all values are null, returns null.
All arguments must be of the same primitive type (e.g., StringType, BooleanType, FloatType, IntegerType, etc).
Parameters:
-
*cols
(ColumnOrName
, default:()
) –Column expressions or column names to evaluate. Each argument should be a single column expression or column name string.
Returns:
-
Column
–A Column expression containing the least value from the input columns.
Raises:
-
ValidationError
–If fewer than two columns are provided.
least usage
df.select(fc.least("col1", "col2", "col3"))
Source code in src/fenic/api/functions/builtin.py
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 |
|
lit
lit(value: Any) -> Column
Creates a Column expression representing a literal value.
Parameters:
-
value
(Any
) –The literal value to create a column for
Returns:
-
Column
–A Column expression representing the literal value
Raises:
-
ValueError
–If the type of the value cannot be inferred
Source code in src/fenic/api/functions/core.py
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
|
max
max(column: ColumnOrName) -> Column
Aggregate function: returns the maximum value in the specified column.
Parameters:
-
column
(ColumnOrName
) –Column or column name to compute the maximum of
Returns:
-
Column
–A Column expression representing the maximum aggregation
Raises:
-
TypeError
–If column is not a Column or string
Source code in src/fenic/api/functions/builtin.py
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
|
mean
mean(column: ColumnOrName) -> Column
Aggregate function: returns the mean (average) of all values in the specified column.
Alias for avg().
Parameters:
-
column
(ColumnOrName
) –Column or column name to compute the mean of
Returns:
-
Column
–A Column expression representing the mean aggregation
Raises:
-
TypeError
–If column is not a Column or string
Source code in src/fenic/api/functions/builtin.py
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
|
min
min(column: ColumnOrName) -> Column
Aggregate function: returns the minimum value in the specified column.
Parameters:
-
column
(ColumnOrName
) –Column or column name to compute the minimum of
Returns:
-
Column
–A Column expression representing the minimum aggregation
Raises:
-
TypeError
–If column is not a Column or string
Source code in src/fenic/api/functions/builtin.py
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
|
stddev
stddev(column: ColumnOrName) -> Column
Aggregate function: returns the sample standard deviation of the specified column.
Parameters:
-
column
(ColumnOrName
) –Column or column name.
Returns:
-
Column
–Column expression for sample standard deviation.
Source code in src/fenic/api/functions/builtin.py
186 187 188 189 190 191 192 193 194 195 196 197 198 |
|
struct
struct(*args: Union[ColumnOrName, List[ColumnOrName], Tuple[ColumnOrName, ...]]) -> Column
Creates a new struct column from multiple input columns.
Parameters:
-
*args
(Union[ColumnOrName, List[ColumnOrName], Tuple[ColumnOrName, ...]]
, default:()
) –Columns or column names to combine into a struct. Can be:
- Individual arguments
- Lists of columns/column names
- Tuples of columns/column names
Returns:
-
Column
–A Column expression representing a struct containing the input columns
Raises:
-
TypeError
–If any argument is not a Column, string, or collection of Columns/strings
Source code in src/fenic/api/functions/builtin.py
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
|
sum
sum(column: ColumnOrName) -> Column
Aggregate function: returns the sum of all values in the specified column.
Parameters:
-
column
(ColumnOrName
) –Column or column name to compute the sum of
Returns:
-
Column
–A Column expression representing the sum aggregation
Raises:
-
TypeError
–If column is not a Column or string
Source code in src/fenic/api/functions/builtin.py
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
|
udf
udf(f: Optional[Callable] = None, *, return_type: DataType)
A decorator or function for creating user-defined functions (UDFs) that can be applied to DataFrame rows.
When applied, UDFs will:
- Access StructType
columns as Python dictionaries (dict[str, Any]
).
- Access ArrayType
columns as Python lists (list[Any]
).
- Access primitive types (e.g., int
, float
, str
) as their respective Python types.
Parameters:
-
f
(Optional[Callable]
, default:None
) –Python function to convert to UDF
-
return_type
(DataType
) –Expected return type of the UDF. Required parameter.
UDF with primitive types
# UDF with primitive types
@udf(return_type=IntegerType)
def add_one(x: int):
return x + 1
# Or
add_one = udf(lambda x: x + 1, return_type=IntegerType)
UDF with nested types
# UDF with nested types
@udf(return_type=StructType([StructField("value1", IntegerType), StructField("value2", IntegerType)]))
def example_udf(x: dict[str, int], y: list[int]):
return {
"value1": x["value1"] + x["value2"] + y[0],
"value2": x["value1"] + x["value2"] + y[1],
}
Source code in src/fenic/api/functions/builtin.py
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
|
when
when(condition: Column, value: Column) -> Column
Evaluates a condition and returns a value if true.
This function is used to create conditional expressions. If Column.otherwise() is not invoked, None is returned for unmatched conditions.
Parameters:
-
condition
(Column
) –A boolean Column expression to evaluate.
-
value
(Column
) –A Column expression to return if the condition is true.
Returns:
-
Column
–A Column expression that evaluates the condition and returns the specified value when true,
-
Column
–and None otherwise.
Raises:
-
TypeError
–If the condition is not a boolean Column expression.
Basic conditional expression
# Basic usage
df.select(when(col("age") > 18, lit("adult")))
# With otherwise
df.select(when(col("age") > 18, lit("adult")).otherwise(lit("minor")))
Source code in src/fenic/api/functions/builtin.py
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 |
|