fenic.api.functions.array
Array functions for Fenic DataFrames.
This module provides array manipulation functions following PySpark conventions. Functions are available via fc.arr.* namespace (e.g., fc.arr.size()).
Functions:
-
compact–Removes null values from an array.
-
contains–Checks if array column contains a specific value.
-
distinct–Removes duplicate values from an array column.
-
element_at–Returns the element at the given index in an array using 1-based indexing (PySpark compatible).
-
except_–Returns elements in the first array but not in the second.
-
intersect–Returns the intersection of two arrays.
-
max–Returns the maximum value in an array.
-
min–Returns the minimum value in an array.
-
overlap–Checks if two arrays have at least one common element.
-
remove–Removes all occurrences of an element from an array.
-
repeat–Creates an array containing the element repeated count times.
-
reverse–Reverses the elements of an array.
-
size–Returns the number of elements in an array column.
-
slice–Extracts a subarray from an array using 1-based indexing (PySpark compatible).
-
sort–Sorts the array in ascending order.
-
union–Returns the union of two arrays without duplicates.
compact
compact(column: ColumnOrName) -> Column
Removes null values from an array.
Returns a new array with all null values removed. Returns null if the input array itself is null.
Parameters:
-
column(ColumnOrName) –Column or column name containing arrays.
Returns:
-
Column–A Column with arrays having null values removed.
Removing nulls from arrays
import fenic as fc
df = fc.Session.local().create_dataframe({
"values": [[1, None, 2, None, 3], ["a", None, "b"], None]
})
result = df.select(fc.array.compact("values").alias("compact"))
# Output:
# ┌───────────┐
# │ compact │
# ├───────────┤
# │ [1, 2, 3] │
# │ ["a", "b"]│
# │ null │
# └───────────┘
All nulls removed
df = fc.Session.local().create_dataframe({
"sparse": [[None, None, 1], [None]]
})
result = df.select(fc.array.compact("sparse"))
# Output: [[1], []]
Source code in src/fenic/api/functions/array.py
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 | |
contains
contains(column: ColumnOrName, value: Union[str, int, float, bool, Column]) -> Column
Checks if array column contains a specific value.
This function returns True if the array in the specified column contains the given value, and False otherwise. Returns False if the array is None.
Parameters:
-
column(ColumnOrName) –Column or column name containing the arrays to check.
-
value(Union[str, int, float, bool, Column]) –Value to search for in the arrays. Can be: - A literal value (string, number, boolean) - A Column expression
Returns:
-
Column–A boolean Column expression (True if value is found, False otherwise).
Raises:
-
TypeError–If value type is incompatible with the array element type.
-
TypeError–If the column does not contain array data.
Check for values in arrays
# Check if 'python' exists in arrays in the 'tags' column
df.select(fc.arr.contains("tags", "python"))
# Check using a value from another column
df.select(fc.arr.contains("tags", fc.col("search_term")))
Source code in src/fenic/api/functions/array.py
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 | |
distinct
distinct(column: ColumnOrName) -> Column
Removes duplicate values from an array column.
Parameters:
-
column(ColumnOrName) –Column or column name containing arrays.
Returns:
-
Column–A new column that is an array of unique values from the input column.
Notes
- Will attempt to preserve order of first appearances, but order is not guaranteed.
Example
# create a dataframe with an array column with duplicates
df = session.create_dataframe({
"array_col": [[1, 2, 2, 3], [4, 4, 4], None]
})
# remove duplicates
df.select(fc.arr.distinct("array_col").alias("distinct_array"))
# Output:
# +--------------------+
# | distinct_array |
# +--------------------+
# | [1, 2, 3] |
# | [4] |
# | None |
# +--------------------+
Source code in src/fenic/api/functions/array.py
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 | |
element_at
element_at(column: ColumnOrName, index: Union[int, ColumnOrName]) -> Column
Returns the element at the given index in an array using 1-based indexing (PySpark compatible).
Uses 1-based indexing for compatibility with PySpark. Returns null if the index is out of bounds or if the input array is null.
Parameters:
-
column(ColumnOrName) –Column or column name containing arrays.
-
index(Union[int, ColumnOrName]) –Index of the element (1-based). Positive indices count from the start (1 = first element), negative indices count from the end (-1 = last element). Can be an integer literal or a Column expression.
Returns:
-
Column–A Column containing the element at the specified index.
Accessing with positive indices
import fenic as fc
df = fc.Session.local().create_dataframe({
"numbers": [[10, 20, 30, 40], [100, 200]]
})
result = df.select(
fc.array.element_at("numbers", 1).alias("first"),
fc.array.element_at("numbers", 2).alias("second")
)
# Output:
# ┌───────┬────────┐
# │ first │ second │
# ├───────┼────────┤
# │ 10 │ 20 │
# │ 100 │ 200 │
# └───────┴────────┘
Accessing with negative indices
df = fc.Session.local().create_dataframe({
"arr": [["a", "b", "c", "d"], ["x", "y", "z"]]
})
result = df.select(
fc.array.element_at("arr", -1).alias("last"),
fc.array.element_at("arr", -2).alias("second_last")
)
# Output:
# ┌──────┬─────────────┐
# │ last │ second_last │
# ├──────┼─────────────┤
# │ "d" │ "c" │
# │ "z" │ "y" │
# └──────┴─────────────┘
Dynamic indexing with columns
df = fc.Session.local().create_dataframe({
"values": [[1, 2, 3], [10, 20, 30]],
"position": [2, 3]
})
result = df.select(fc.array.element_at("values", fc.col("position")))
# Output: [2, 30]
Source code in src/fenic/api/functions/array.py
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 | |
except_
except_(col1: ColumnOrName, col2: ColumnOrName) -> Column
Returns elements in the first array but not in the second.
Returns distinct elements from the first array that are not present in the second array (set difference). Returns null if either input array is null.
Parameters:
-
col1(ColumnOrName) –First array column or column name.
-
col2(ColumnOrName) –Second array column or column name.
Returns:
-
Column–A Column containing distinct elements in col1 but not in col2.
Filtering out deprecated tags
import fenic as fc
df = fc.Session.local().create_dataframe({
"all_tags": [["a", "b", "c", "d"], ["x", "y", "z"]],
"deprecated": [["b", "d"], ["y"]]
})
result = df.select(fc.array.except_("all_tags", "deprecated").alias("active"))
# Output:
# ┌────────────┐
# │ active │
# ├────────────┤
# │ ["a", "c"] │
# │ ["x", "z"] │
# └────────────┘
No common elements
df = fc.Session.local().create_dataframe({
"arr1": [[1, 2, 3]],
"arr2": [[4, 5, 6]]
})
result = df.select(fc.array.except_("arr1", "arr2"))
# Output: [[1, 2, 3]] # All elements retained
Source code in src/fenic/api/functions/array.py
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 | |
intersect
intersect(col1: ColumnOrName, col2: ColumnOrName) -> Column
Returns the intersection of two arrays.
Returns distinct elements that appear in both arrays. The order of elements is not guaranteed. Returns null if either input array is null.
Parameters:
-
col1(ColumnOrName) –First array column or column name.
-
col2(ColumnOrName) –Second array column or column name.
Returns:
-
Column–A Column containing distinct elements present in both arrays.
Intersection of arrays
import fenic as fc
df = fc.Session.local().create_dataframe({
"arr1": [["a", "b", "c"], ["x", "y", "z"]],
"arr2": [["b", "c", "d"], ["y", "z", "w"]]
})
result = df.select(fc.array.intersect("arr1", "arr2").alias("common"))
# Output:
# ┌────────────┐
# │ common │
# ├────────────┤
# │ ["b", "c"] │
# │ ["y", "z"] │
# └────────────┘
No intersection
df = fc.Session.local().create_dataframe({
"arr1": [[1, 2, 3]],
"arr2": [[4, 5, 6]]
})
result = df.select(fc.array.intersect("arr1", "arr2"))
# Output: [[]] # Empty array when no common elements
Source code in src/fenic/api/functions/array.py
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 | |
max
max(column: ColumnOrName) -> Column
Returns the maximum value in an array.
Only works on arrays of comparable types (numeric, string, date, boolean). Returns null if the array is null or empty.
Parameters:
-
column(ColumnOrName) –Column or column name containing arrays of comparable types (numeric, string, date, boolean). Does not work on arrays of structs.
Returns:
-
Column–A Column containing the maximum value from each array. Returns the element
-
Column–type of the array (e.g., int for array of ints).
Raises:
-
TypeMismatchError–If array contains non-comparable element types (e.g., structs).
Finding maximum in numeric arrays
import fenic as fc
df = fc.Session.local().create_dataframe({
"numbers": [[3, 1, 5, 2], [10, 20], None, []]
})
result = df.select(fc.arr.max("numbers").alias("max_value"))
# Output:
# ┌───────────┐
# │ max_value │
# ├───────────┤
# │ 5 │
# │ 20 │
# │ null │
# │ null │
# └───────────┘
Finding maximum in string arrays
df = fc.Session.local().create_dataframe({
"words": [["cat", "apple", "zebra"], ["dog", "bat"]]
})
result = df.select(fc.array.max("words").alias("max_word"))
# Output: ["zebra", "dog"]
Source code in src/fenic/api/functions/array.py
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 | |
min
min(column: ColumnOrName) -> Column
Returns the minimum value in an array.
Only works on arrays of comparable types (numeric, string, date, boolean). Returns null if the array is null or empty.
Parameters:
-
column(ColumnOrName) –Column or column name containing arrays of comparable types (numeric, string, date, boolean). Does not work on arrays of structs.
Returns:
-
Column–A Column containing the minimum value from each array. Returns the element
-
Column–type of the array (e.g., int for array of ints).
Raises:
-
TypeMismatchError–If array contains non-comparable element types (e.g., structs).
Finding minimum in numeric arrays
import fenic as fc
df = fc.Session.local().create_dataframe({
"numbers": [[3, 1, 5, 2], [10, 20], None, []]
})
result = df.select(fc.arr.min("numbers").alias("min_value"))
# Output:
# ┌───────────┐
# │ min_value │
# ├───────────┤
# │ 1 │
# │ 10 │
# │ null │
# │ null │
# └───────────┘
Finding minimum in string arrays
df = fc.Session.local().create_dataframe({
"words": [["cat", "apple", "zebra"], ["dog", "bat"]]
})
result = df.select(fc.array.min("words").alias("min_word"))
# Output: ["apple", "bat"]
Source code in src/fenic/api/functions/array.py
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 | |
overlap
overlap(col1: ColumnOrName, col2: ColumnOrName) -> Column
Checks if two arrays have at least one common element.
Returns true if the two arrays share at least one common element, false if they have no common elements. Returns null if either input array is null.
Parameters:
-
col1(ColumnOrName) –First array column or column name.
-
col2(ColumnOrName) –Second array column or column name.
Returns:
-
Column–A boolean Column (True if arrays have common elements, False otherwise).
Detecting overlap
import fenic as fc
df = fc.Session.local().create_dataframe({
"arr1": [["a", "b", "c"], ["x", "y"], ["p", "q"]],
"arr2": [["c", "d", "e"], ["w", "z"], ["q", "r"]]
})
result = df.select(fc.array.overlap("arr1", "arr2").alias("has_overlap"))
# Output:
# ┌─────────────┐
# │ has_overlap │
# ├─────────────┤
# │ true │ # "c" is common
# │ false │ # No common elements
# │ true │ # "q" is common
# └─────────────┘
Using with filtering
df = fc.Session.local().create_dataframe({
"user_tags": [["python", "ml"], ["java", "web"], ["python", "web"]],
"required": [["python", "data"], ["python", "data"], ["python", "data"]]
})
# Filter users with at least one required tag
result = df.filter(fc.array.overlap("user_tags", "required"))
# Output: Rows with indices 0 and 2 (have "python" tag)
Numeric arrays
df = fc.Session.local().create_dataframe({
"nums1": [[1, 2, 3], [4, 5, 6]],
"nums2": [[3, 4, 5], [7, 8, 9]]
})
result = df.select(fc.array.overlap("nums1", "nums2"))
# Output: [true, false]
Source code in src/fenic/api/functions/array.py
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 | |
remove
remove(column: ColumnOrName, element: Union[str, int, float, bool, Column]) -> Column
Removes all occurrences of an element from an array.
Returns a new array with all instances of the specified element removed. Returns null if the input array is null.
Parameters:
-
column(ColumnOrName) –Column or column name containing arrays.
-
element(Union[str, int, float, bool, Column]) –Element to remove from the arrays. Can be a literal value or a Column expression.
Returns:
-
Column–A Column with arrays having all occurrences of the element removed.
Removing literals
import fenic as fc
df = fc.Session.local().create_dataframe({
"tags": [["a", "b", "a", "c"], ["x", "y", "x"]],
"numbers": [[1, 2, 1, 3], [5, 5, 5]]
})
result = df.select(
fc.array.remove("tags", "a").alias("no_a"),
fc.array.remove("numbers", 5).alias("no_five")
)
# Output:
# ┌─────────────┬──────────┐
# │ no_a │ no_five │
# ├─────────────┼──────────┤
# │ ["b", "c"] │ [1, 2, 1, 3] │
# │ ["x", "y"] │ [] │
# └─────────────┴──────────┘
Removing with column expression
df = fc.Session.local().create_dataframe({
"values": [[1, 2, 3], [4, 5, 6]],
"to_remove": [2, 5]
})
result = df.select(fc.array.remove("values", fc.col("to_remove")))
# Output: [[1, 3], [4, 6]]
Source code in src/fenic/api/functions/array.py
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 | |
repeat
repeat(col: ColumnOrName, count: Union[int, ColumnOrName]) -> Column
Creates an array containing the element repeated count times.
Returns a new array where the element is repeated the specified number of times. Returns null if count is null or negative.
Parameters:
-
col(ColumnOrName) –Column, column name, or literal value to repeat.
-
count(Union[int, ColumnOrName]) –Number of times to repeat the element. Can be an integer literal or a Column expression.
Returns:
-
Column–A Column containing an array with the element repeated count times.
Repeating literals
import fenic as fc
df = fc.Session.local().create_dataframe({
"id": [1, 2, 3]
})
result = df.select(
fc.array.repeat(fc.lit("x"), 3).alias("repeated"),
fc.array.repeat(fc.lit(0), 5).alias("zeros")
)
# Output:
# ┌─────────────────┬──────────────────────┐
# │ repeated │ zeros │
# ├─────────────────┼──────────────────────┤
# │ ["x", "x", "x"] │ [0, 0, 0, 0, 0] │
# │ ["x", "x", "x"] │ [0, 0, 0, 0, 0] │
# │ ["x", "x", "x"] │ [0, 0, 0, 0, 0] │
# └─────────────────┴──────────────────────┘
Repeating column values
df = fc.Session.local().create_dataframe({
"value": ["a", "b", "c"],
"count": [2, 3, 1]
})
result = df.select(fc.array.repeat(fc.col("value"), fc.col("count")))
# Output: [["a", "a"], ["b", "b", "b"], ["c"]]
Source code in src/fenic/api/functions/array.py
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 | |
reverse
reverse(column: ColumnOrName) -> Column
Reverses the elements of an array.
Returns a new array with elements in reverse order. Returns null if the input array is null.
Parameters:
-
column(ColumnOrName) –Column or column name containing arrays.
Returns:
-
Column–A Column with reversed arrays.
Reversing arrays
import fenic as fc
df = fc.Session.local().create_dataframe({
"numbers": [[1, 2, 3, 4], [10, 20]],
"words": [["a", "b", "c"], ["x", "y"]]
})
result = df.select(
fc.array.reverse("numbers").alias("reversed_nums"),
fc.array.reverse("words").alias("reversed_words")
)
# Output:
# ┌────────────────┬─────────────────┐
# │ reversed_nums │ reversed_words │
# ├────────────────┼─────────────────┤
# │ [4, 3, 2, 1] │ ["c", "b", "a"] │
# │ [20, 10] │ ["y", "x"] │
# └────────────────┴─────────────────┘
Source code in src/fenic/api/functions/array.py
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 | |
size
size(column: ColumnOrName) -> Column
Returns the number of elements in an array column.
This function computes the length of arrays stored in the specified column. Returns None for None arrays.
Parameters:
-
column(ColumnOrName) –Column or column name containing arrays whose length to compute.
Returns:
-
Column–A Column expression representing the array length.
Raises:
-
TypeError–If the column does not contain array data.
Get array sizes
# Get the size of arrays in 'tags' column
df.select(fc.arr.size("tags"))
# Use with column reference
df.select(fc.arr.size(fc.col("tags")))
Source code in src/fenic/api/functions/array.py
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 | |
slice
slice(column: ColumnOrName, start: Union[int, ColumnOrName], length: Union[int, ColumnOrName]) -> Column
Extracts a subarray from an array using 1-based indexing (PySpark compatible).
Extracts a contiguous subarray starting from the given position. Uses 1-based indexing for compatibility with PySpark. Returns null if the input array is null.
Parameters:
-
column(ColumnOrName) –Column or column name containing arrays.
-
start(Union[int, ColumnOrName]) –Starting position (1-based index). Positive indices count from the start (1 = first element), negative indices count from the end (-1 = last element).
-
length(Union[int, ColumnOrName]) –Number of elements to extract. Must be positive.
Returns:
-
Column–A Column with subarrays extracted.
Extracting from the start
import fenic as fc
df = fc.Session.local().create_dataframe({
"numbers": [[1, 2, 3, 4, 5], [10, 20, 30]]
})
result = df.select(
fc.array.slice("numbers", 1, 3).alias("first_three"),
fc.array.slice("numbers", 2, 2).alias("middle_two")
)
# Output:
# ┌───────────────┬────────────┐
# │ first_three │ middle_two │
# ├───────────────┼────────────┤
# │ [1, 2, 3] │ [2, 3] │
# │ [10, 20, 30] │ [20, 30] │
# └───────────────┴────────────┘
Using negative indices
df = fc.Session.local().create_dataframe({
"arr": [[1, 2, 3, 4, 5]]
})
# Extract last 3 elements: start at -3, take 3
result = df.select(fc.array.slice("arr", -3, 3))
# Output: [[3, 4, 5]]
Dynamic slicing with columns
df = fc.Session.local().create_dataframe({
"values": [[1, 2, 3, 4, 5], [10, 20, 30]],
"start_idx": [2, 1],
"num_elements": [2, 2]
})
result = df.select(
fc.array.slice("values", fc.col("start_idx"), fc.col("num_elements"))
)
# Output: [[2, 3], [10, 20]]
Source code in src/fenic/api/functions/array.py
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 | |
sort
sort(column: ColumnOrName) -> Column
Sorts the array in ascending order.
Only works on arrays of comparable types (numeric, string, date, boolean). Null values are placed at the end of the array.
Parameters:
-
column(ColumnOrName) –Column or column name containing arrays of comparable types (numeric, string, date, boolean). Does not work on arrays of structs.
Returns:
-
Column–A Column with sorted arrays in ascending order. Returns null if the input
-
Column–array is null.
Raises:
-
TypeMismatchError–If array contains non-comparable element types (e.g., structs).
Note
Unlike PySpark's array_sort, this does not support a custom comparator function. For custom sorting logic on complex types, consider using other transformations.
Sorting numeric arrays
import fenic as fc
df = fc.Session.local().create_dataframe({
"numbers": [[3, 1, 5, 2], [10, 30, 20], None]
})
result = df.select(fc.array.sort("numbers").alias("sorted"))
# Output:
# ┌────────────────┐
# │ sorted │
# ├────────────────┤
# │ [1, 2, 3, 5] │
# │ [10, 20, 30] │
# │ null │
# └────────────────┘
Sorting string arrays
df = fc.Session.local().create_dataframe({
"words": [["cat", "apple", "bat"], ["zebra", "apple"]]
})
result = df.select(fc.array.sort("words").alias("sorted"))
# Output: [["apple", "bat", "cat"], ["apple", "zebra"]]
Source code in src/fenic/api/functions/array.py
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 | |
union
union(col1: ColumnOrName, col2: ColumnOrName) -> Column
Returns the union of two arrays without duplicates.
Returns all distinct elements from both arrays. The order of elements is not guaranteed. Returns null if either input array is null.
Parameters:
-
col1(ColumnOrName) –First array column or column name.
-
col2(ColumnOrName) –Second array column or column name.
Returns:
-
Column–A Column containing the distinct union of both arrays.
Union of tag arrays
import fenic as fc
df = fc.Session.local().create_dataframe({
"tags1": [["a", "b", "c"], ["x", "y"]],
"tags2": [["b", "c", "d"], ["y", "z"]]
})
result = df.select(fc.array.union("tags1", "tags2").alias("all_tags"))
# Output:
# ┌──────────────────────┐
# │ all_tags │
# ├──────────────────────┤
# │ ["a", "b", "c", "d"] │
# │ ["x", "y", "z"] │
# └──────────────────────┘
Union with numeric arrays
df = fc.Session.local().create_dataframe({
"nums1": [[1, 2, 3], [5, 6]],
"nums2": [[2, 3, 4], [6, 7]]
})
result = df.select(fc.array.union("nums1", "nums2"))
# Output: [[1, 2, 3, 4], [5, 6, 7]]
Source code in src/fenic/api/functions/array.py
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 | |