Skip to content

fenic.api.dataframe

DataFrame API for Fenic - provides DataFrame and grouped data operations.

Classes:

  • DataFrame

    A data collection organized into named columns.

  • GroupedData

    Methods for aggregations on a grouped DataFrame.

  • SemanticExtensions

    A namespace for semantic dataframe operators.

DataFrame

A data collection organized into named columns.

The DataFrame class represents a lazily evaluated computation on data. Operations on DataFrame build up a logical query plan that is only executed when an action like show(), to_polars(), to_pandas(), to_arrow(), to_pydict(), to_pylist(), or count() is called.

The DataFrame supports method chaining for building complex transformations.

Create and transform a DataFrame
# Create a DataFrame from a dictionary
df = session.create_dataframe({"id": [1, 2, 3], "value": ["a", "b", "c"]})

# Chain transformations
result = df.filter(col("id") > 1).select("id", "value")

# Show results
result.show()
# Output:
# +---+-----+
# | id|value|
# +---+-----+
# |  2|    b|
# |  3|    c|
# +---+-----+

Methods:

  • agg

    Aggregate on the entire DataFrame without groups.

  • cache

    Alias for persist(). Mark DataFrame for caching after first computation.

  • collect

    Execute the DataFrame computation and return the result as a QueryResult.

  • count

    Count the number of rows in the DataFrame.

  • drop

    Remove one or more columns from this DataFrame.

  • drop_duplicates

    Return a DataFrame with duplicate rows removed.

  • explain

    Display the logical plan of the DataFrame.

  • explode

    Create a new row for each element in an array column.

  • filter

    Filters rows using the given condition.

  • group_by

    Groups the DataFrame using the specified columns.

  • join

    Joins this DataFrame with another DataFrame.

  • limit

    Limits the number of rows to the specified number.

  • lineage

    Create a Lineage object to trace data through transformations.

  • order_by

    Sort the DataFrame by the specified columns. Alias for sort().

  • persist

    Mark this DataFrame to be persisted after first computation.

  • select

    Projects a set of Column expressions or column names.

  • show

    Display the DataFrame content in a tabular form.

  • sort

    Sort the DataFrame by the specified columns.

  • to_arrow

    Execute the DataFrame computation and return an Apache Arrow Table.

  • to_pandas

    Execute the DataFrame computation and return a Pandas DataFrame.

  • to_polars

    Execute the DataFrame computation and return the result as a Polars DataFrame.

  • to_pydict

    Execute the DataFrame computation and return a dictionary of column arrays.

  • to_pylist

    Execute the DataFrame computation and return a list of row dictionaries.

  • union

    Return a new DataFrame containing the union of rows in this and another DataFrame.

  • unnest

    Unnest the specified struct columns into separate columns.

  • where

    Filters rows using the given condition (alias for filter()).

  • with_column

    Add a new column or replace an existing column.

  • with_column_renamed

    Rename a column. No-op if the column does not exist.

Attributes:

columns property

columns: List[str]

Get list of column names.

Returns:

  • List[str]

    List[str]: List of all column names in the DataFrame

Examples:

>>> df.columns
['name', 'age', 'city']

schema property

schema: Schema

Get the schema of this DataFrame.

Returns:

  • Schema ( Schema ) –

    Schema containing field names and data types

Examples:

>>> df.schema
Schema([
    ColumnField('name', StringType),
    ColumnField('age', IntegerType)
])

semantic property

semantic: SemanticExtensions

Interface for semantic operations on the DataFrame.

write property

write: DataFrameWriter

Interface for saving the content of the DataFrame.

Returns:

  • DataFrameWriter ( DataFrameWriter ) –

    Writer interface to write DataFrame.

agg

agg(*exprs: Union[Column, Dict[str, str]]) -> DataFrame

Aggregate on the entire DataFrame without groups.

This is equivalent to group_by() without any grouping columns.

Parameters:

  • *exprs (Union[Column, Dict[str, str]], default: () ) –

    Aggregation expressions or dictionary of aggregations.

Returns:

  • DataFrame ( DataFrame ) –

    Aggregation results.

Multiple aggregations
# Create sample DataFrame
df = session.create_dataframe({
    "salary": [80000, 70000, 90000, 75000, 85000],
    "age": [25, 30, 35, 28, 32]
})

# Multiple aggregations
df.agg(
    count().alias("total_rows"),
    avg(col("salary")).alias("avg_salary")
).show()
# Output:
# +----------+-----------+
# |total_rows|avg_salary|
# +----------+-----------+
# |         5|   80000.0|
# +----------+-----------+
Dictionary style
# Dictionary style
df.agg({col("salary"): "avg", col("age"): "max"}).show()
# Output:
# +-----------+--------+
# |avg(salary)|max(age)|
# +-----------+--------+
# |    80000.0|      35|
# +-----------+--------+
Source code in src/fenic/api/dataframe/dataframe.py
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
def agg(self, *exprs: Union[Column, Dict[str, str]]) -> DataFrame:
    """Aggregate on the entire DataFrame without groups.

    This is equivalent to group_by() without any grouping columns.

    Args:
        *exprs: Aggregation expressions or dictionary of aggregations.

    Returns:
        DataFrame: Aggregation results.

    Example: Multiple aggregations
        ```python
        # Create sample DataFrame
        df = session.create_dataframe({
            "salary": [80000, 70000, 90000, 75000, 85000],
            "age": [25, 30, 35, 28, 32]
        })

        # Multiple aggregations
        df.agg(
            count().alias("total_rows"),
            avg(col("salary")).alias("avg_salary")
        ).show()
        # Output:
        # +----------+-----------+
        # |total_rows|avg_salary|
        # +----------+-----------+
        # |         5|   80000.0|
        # +----------+-----------+
        ```

    Example: Dictionary style
        ```python
        # Dictionary style
        df.agg({col("salary"): "avg", col("age"): "max"}).show()
        # Output:
        # +-----------+--------+
        # |avg(salary)|max(age)|
        # +-----------+--------+
        # |    80000.0|      35|
        # +-----------+--------+
        ```
    """
    return self.group_by().agg(*exprs)

cache

cache() -> DataFrame

Alias for persist(). Mark DataFrame for caching after first computation.

Returns:

  • DataFrame ( DataFrame ) –

    Same DataFrame, but marked for caching

See Also

persist(): Full documentation of caching behavior

Source code in src/fenic/api/dataframe/dataframe.py
405
406
407
408
409
410
411
412
413
414
def cache(self) -> DataFrame:
    """Alias for persist(). Mark DataFrame for caching after first computation.

    Returns:
        DataFrame: Same DataFrame, but marked for caching

    See Also:
        persist(): Full documentation of caching behavior
    """
    return self.persist()

collect

collect(data_type: DataLikeType = 'polars') -> QueryResult

Execute the DataFrame computation and return the result as a QueryResult.

This is an action that triggers computation of the DataFrame query plan. All transformations and operations are executed, and the results are materialized into a QueryResult, which contains both the result data and the query metrics.

Parameters:

  • data_type (DataLikeType, default: 'polars' ) –

    The type of data to return

Returns:

  • QueryResult ( QueryResult ) –

    A QueryResult with materialized data and query metrics

Source code in src/fenic/api/dataframe/dataframe.py
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
def collect(self, data_type: DataLikeType = "polars") -> QueryResult:
    """Execute the DataFrame computation and return the result as a QueryResult.

    This is an action that triggers computation of the DataFrame query plan.
    All transformations and operations are executed, and the results are
    materialized into a QueryResult, which contains both the result data and the query metrics.

    Args:
        data_type: The type of data to return

    Returns:
        QueryResult: A QueryResult with materialized data and query metrics
    """
    result: Tuple[pl.DataFrame, QueryMetrics] = self._logical_plan.session_state.execution.collect(self._logical_plan)
    df, metrics = result
    logger.info(metrics.get_summary())

    if data_type == "polars":
        return QueryResult(df, metrics)
    elif data_type == "pandas":
        return QueryResult(df.to_pandas(use_pyarrow_extension_array=True), metrics)
    elif data_type == "arrow":
        return QueryResult(df.to_arrow(), metrics)
    elif data_type == "pydict":
        return QueryResult(df.to_dict(as_series=False), metrics)
    elif data_type == "pylist":
        return QueryResult(df.to_dicts(), metrics)
    else:
        raise ValidationError(f"Invalid data type: {data_type} in collect(). Valid data types are: polars, pandas, arrow, pydict, pylist")

count

count() -> int

Count the number of rows in the DataFrame.

This is an action that triggers computation of the DataFrame. The output is an integer representing the number of rows.

Returns:

  • int ( int ) –

    The number of rows in the DataFrame

Source code in src/fenic/api/dataframe/dataframe.py
339
340
341
342
343
344
345
346
347
348
def count(self) -> int:
    """Count the number of rows in the DataFrame.

    This is an action that triggers computation of the DataFrame.
    The output is an integer representing the number of rows.

    Returns:
        int: The number of rows in the DataFrame
    """
    return self._logical_plan.session_state.execution.count(self._logical_plan)[0]

drop

drop(*col_names: str) -> DataFrame

Remove one or more columns from this DataFrame.

Parameters:

  • *col_names (str, default: () ) –

    Names of columns to drop.

Returns:

  • DataFrame ( DataFrame ) –

    New DataFrame without specified columns.

Raises:

  • ValueError

    If any specified column doesn't exist in the DataFrame.

  • ValueError

    If dropping the columns would result in an empty DataFrame.

Drop single column
# Create sample DataFrame
df = session.create_dataframe({
    "id": [1, 2, 3],
    "name": ["Alice", "Bob", "Charlie"],
    "age": [25, 30, 35]
})

# Drop single column
df.drop("age").show()
# Output:
# +---+-------+
# | id|   name|
# +---+-------+
# |  1|  Alice|
# |  2|    Bob|
# |  3|Charlie|
# +---+-------+
Drop multiple columns
# Drop multiple columns
df.drop(col("id"), "age").show()
# Output:
# +-------+
# |   name|
# +-------+
# |  Alice|
# |    Bob|
# |Charlie|
# +-------+
Error when dropping non-existent column
# This will raise a ValueError
df.drop("non_existent_column")
# ValueError: Column 'non_existent_column' not found in DataFrame
Source code in src/fenic/api/dataframe/dataframe.py
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
def drop(self, *col_names: str) -> DataFrame:
    """Remove one or more columns from this DataFrame.

    Args:
        *col_names: Names of columns to drop.

    Returns:
        DataFrame: New DataFrame without specified columns.

    Raises:
        ValueError: If any specified column doesn't exist in the DataFrame.
        ValueError: If dropping the columns would result in an empty DataFrame.

    Example: Drop single column
        ```python
        # Create sample DataFrame
        df = session.create_dataframe({
            "id": [1, 2, 3],
            "name": ["Alice", "Bob", "Charlie"],
            "age": [25, 30, 35]
        })

        # Drop single column
        df.drop("age").show()
        # Output:
        # +---+-------+
        # | id|   name|
        # +---+-------+
        # |  1|  Alice|
        # |  2|    Bob|
        # |  3|Charlie|
        # +---+-------+
        ```

    Example: Drop multiple columns
        ```python
        # Drop multiple columns
        df.drop(col("id"), "age").show()
        # Output:
        # +-------+
        # |   name|
        # +-------+
        # |  Alice|
        # |    Bob|
        # |Charlie|
        # +-------+
        ```

    Example: Error when dropping non-existent column
        ```python
        # This will raise a ValueError
        df.drop("non_existent_column")
        # ValueError: Column 'non_existent_column' not found in DataFrame
        ```
    """
    if not col_names:
        return self

    current_cols = set(self.columns)
    to_drop = set(col_names)
    missing = to_drop - current_cols

    if missing:
        missing_str = (
            f"Column '{next(iter(missing))}'"
            if len(missing) == 1
            else f"Columns {sorted(missing)}"
        )
        raise ValueError(f"{missing_str} not found in DataFrame")

    remaining_cols = [
        col(c)._logical_expr for c in self.columns if c not in to_drop
    ]

    if not remaining_cols:
        raise ValueError("Cannot drop all columns from DataFrame")

    return self._from_logical_plan(
        Projection(self._logical_plan, remaining_cols)
    )

drop_duplicates

drop_duplicates(subset: Optional[List[str]] = None) -> DataFrame

Return a DataFrame with duplicate rows removed.

Parameters:

  • subset (Optional[List[str]], default: None ) –

    Column names to consider when identifying duplicates. If not provided, all columns are considered.

Returns:

  • DataFrame ( DataFrame ) –

    A new DataFrame with duplicate rows removed.

Raises:

  • ValueError

    If a specified column is not present in the current DataFrame schema.

Remove duplicates considering specific columns
# Create sample DataFrame
df = session.create_dataframe({
    "c1": [1, 2, 3, 1],
    "c2": ["a", "a", "a", "a"],
    "c3": ["b", "b", "b", "b"]
})

# Remove duplicates considering all columns
df.drop_duplicates([col("c1"), col("c2"), col("c3")]).show()
# Output:
# +---+---+---+
# | c1| c2| c3|
# +---+---+---+
# |  1|  a|  b|
# |  2|  a|  b|
# |  3|  a|  b|
# +---+---+---+

# Remove duplicates considering only c1
df.drop_duplicates([col("c1")]).show()
# Output:
# +---+---+---+
# | c1| c2| c3|
# +---+---+---+
# |  1|  a|  b|
# |  2|  a|  b|
# |  3|  a|  b|
# +---+---+---+
Source code in src/fenic/api/dataframe/dataframe.py
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
def drop_duplicates(
    self,
    subset: Optional[List[str]] = None,
) -> DataFrame:
    """Return a DataFrame with duplicate rows removed.

    Args:
        subset: Column names to consider when identifying duplicates. If not provided, all columns are considered.

    Returns:
        DataFrame: A new DataFrame with duplicate rows removed.

    Raises:
        ValueError: If a specified column is not present in the current DataFrame schema.

    Example: Remove duplicates considering specific columns
        ```python
        # Create sample DataFrame
        df = session.create_dataframe({
            "c1": [1, 2, 3, 1],
            "c2": ["a", "a", "a", "a"],
            "c3": ["b", "b", "b", "b"]
        })

        # Remove duplicates considering all columns
        df.drop_duplicates([col("c1"), col("c2"), col("c3")]).show()
        # Output:
        # +---+---+---+
        # | c1| c2| c3|
        # +---+---+---+
        # |  1|  a|  b|
        # |  2|  a|  b|
        # |  3|  a|  b|
        # +---+---+---+

        # Remove duplicates considering only c1
        df.drop_duplicates([col("c1")]).show()
        # Output:
        # +---+---+---+
        # | c1| c2| c3|
        # +---+---+---+
        # |  1|  a|  b|
        # |  2|  a|  b|
        # |  3|  a|  b|
        # +---+---+---+
        ```
    """
    exprs = []
    if subset:
        for c in subset:
            if c not in self.columns:
                raise TypeError(f"Column {c} not found in DataFrame.")
            exprs.append(col(c)._logical_expr)

    return self._from_logical_plan(
        DropDuplicates(self._logical_plan, exprs),
    )

explain

explain() -> None

Display the logical plan of the DataFrame.

Source code in src/fenic/api/dataframe/dataframe.py
221
222
223
def explain(self) -> None:
    """Display the logical plan of the DataFrame."""
    print(str(self._logical_plan))

explode

explode(column: ColumnOrName) -> DataFrame

Create a new row for each element in an array column.

This operation is useful for flattening nested data structures. For each row in the input DataFrame that contains an array/list in the specified column, this method will: 1. Create N new rows, where N is the length of the array 2. Each new row will be identical to the original row, except the array column will contain just a single element from the original array 3. Rows with NULL values or empty arrays in the specified column are filtered out

Parameters:

  • column (ColumnOrName) –

    Name of array column to explode (as string) or Column expression.

Returns:

  • DataFrame ( DataFrame ) –

    New DataFrame with the array column exploded into multiple rows.

Raises:

  • TypeError

    If column argument is not a string or Column.

Explode array column
# Create sample DataFrame
df = session.create_dataframe({
    "id": [1, 2, 3, 4],
    "tags": [["red", "blue"], ["green"], [], None],
    "name": ["Alice", "Bob", "Carol", "Dave"]
})

# Explode the tags column
df.explode("tags").show()
# Output:
# +---+-----+-----+
# | id| tags| name|
# +---+-----+-----+
# |  1|  red|Alice|
# |  1| blue|Alice|
# |  2|green|  Bob|
# +---+-----+-----+
Using column expression
# Explode using column expression
df.explode(col("tags")).show()
# Output:
# +---+-----+-----+
# | id| tags| name|
# +---+-----+-----+
# |  1|  red|Alice|
# |  1| blue|Alice|
# |  2|green|  Bob|
# +---+-----+-----+
Source code in src/fenic/api/dataframe/dataframe.py
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
def explode(self, column: ColumnOrName) -> DataFrame:
    """Create a new row for each element in an array column.

    This operation is useful for flattening nested data structures. For each row in the
    input DataFrame that contains an array/list in the specified column, this method will:
    1. Create N new rows, where N is the length of the array
    2. Each new row will be identical to the original row, except the array column will
       contain just a single element from the original array
    3. Rows with NULL values or empty arrays in the specified column are filtered out

    Args:
        column: Name of array column to explode (as string) or Column expression.

    Returns:
        DataFrame: New DataFrame with the array column exploded into multiple rows.

    Raises:
        TypeError: If column argument is not a string or Column.

    Example: Explode array column
        ```python
        # Create sample DataFrame
        df = session.create_dataframe({
            "id": [1, 2, 3, 4],
            "tags": [["red", "blue"], ["green"], [], None],
            "name": ["Alice", "Bob", "Carol", "Dave"]
        })

        # Explode the tags column
        df.explode("tags").show()
        # Output:
        # +---+-----+-----+
        # | id| tags| name|
        # +---+-----+-----+
        # |  1|  red|Alice|
        # |  1| blue|Alice|
        # |  2|green|  Bob|
        # +---+-----+-----+
        ```

    Example: Using column expression
        ```python
        # Explode using column expression
        df.explode(col("tags")).show()
        # Output:
        # +---+-----+-----+
        # | id| tags| name|
        # +---+-----+-----+
        # |  1|  red|Alice|
        # |  1| blue|Alice|
        # |  2|green|  Bob|
        # +---+-----+-----+
        ```
    """
    return self._from_logical_plan(
        Explode(self._logical_plan, Column._from_col_or_name(column)._logical_expr),
    )

filter

filter(condition: Column) -> DataFrame

Filters rows using the given condition.

Parameters:

  • condition (Column) –

    A Column expression that evaluates to a boolean

Returns:

  • DataFrame ( DataFrame ) –

    Filtered DataFrame

Filter with numeric comparison
# Create a DataFrame
df = session.create_dataframe({"age": [25, 30, 35], "name": ["Alice", "Bob", "Charlie"]})

# Filter with numeric comparison
df.filter(col("age") > 25).show()
# Output:
# +---+-------+
# |age|   name|
# +---+-------+
# | 30|    Bob|
# | 35|Charlie|
# +---+-------+
Filter with semantic predicate
# Filter with semantic predicate
df.filter((col("age") > 25) & semantic.predicate("This {feedback} mentions problems with the user interface or navigation")).show()
# Output:
# +---+-------+
# |age|   name|
# +---+-------+
# | 30|    Bob|
# | 35|Charlie|
# +---+-------+
Filter with multiple conditions
# Filter with multiple conditions
df.filter((col("age") > 25) & (col("age") <= 35)).show()
# Output:
# +---+-------+
# |age|   name|
# +---+-------+
# | 30|    Bob|
# | 35|Charlie|
# +---+-------+
Source code in src/fenic/api/dataframe/dataframe.py
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
def filter(self, condition: Column) -> DataFrame:
    """Filters rows using the given condition.

    Args:
        condition: A Column expression that evaluates to a boolean

    Returns:
        DataFrame: Filtered DataFrame

    Example: Filter with numeric comparison
        ```python
        # Create a DataFrame
        df = session.create_dataframe({"age": [25, 30, 35], "name": ["Alice", "Bob", "Charlie"]})

        # Filter with numeric comparison
        df.filter(col("age") > 25).show()
        # Output:
        # +---+-------+
        # |age|   name|
        # +---+-------+
        # | 30|    Bob|
        # | 35|Charlie|
        # +---+-------+
        ```

    Example: Filter with semantic predicate
        ```python
        # Filter with semantic predicate
        df.filter((col("age") > 25) & semantic.predicate("This {feedback} mentions problems with the user interface or navigation")).show()
        # Output:
        # +---+-------+
        # |age|   name|
        # +---+-------+
        # | 30|    Bob|
        # | 35|Charlie|
        # +---+-------+
        ```

    Example: Filter with multiple conditions
        ```python
        # Filter with multiple conditions
        df.filter((col("age") > 25) & (col("age") <= 35)).show()
        # Output:
        # +---+-------+
        # |age|   name|
        # +---+-------+
        # | 30|    Bob|
        # | 35|Charlie|
        # +---+-------+
        ```
    """
    return self._from_logical_plan(
        Filter(self._logical_plan, condition._logical_expr),
    )

group_by

group_by(*cols: ColumnOrName) -> GroupedData

Groups the DataFrame using the specified columns.

Parameters:

  • *cols (ColumnOrName, default: () ) –

    Columns to group by. Can be column names as strings or Column expressions.

Returns:

  • GroupedData ( GroupedData ) –

    Object for performing aggregations on the grouped data.

Group by single column
# Create sample DataFrame
df = session.create_dataframe({
    "department": ["IT", "HR", "IT", "HR", "IT"],
    "salary": [80000, 70000, 90000, 75000, 85000]
})

# Group by single column
df.group_by(col("department")).count().show()
# Output:
# +----------+-----+
# |department|count|
# +----------+-----+
# |        IT|    3|
# |        HR|    2|
# +----------+-----+
Group by multiple columns
# Group by multiple columns
df.group_by(col("department"), col("location")).agg({"salary": "avg"}).show()
# Output:
# +----------+--------+-----------+
# |department|location|avg(salary)|
# +----------+--------+-----------+
# |        IT|    NYC|    85000.0|
# |        HR|    NYC|    72500.0|
# +----------+--------+-----------+
Group by expression
# Group by expression
df.group_by(col("age").cast("int").alias("age_group")).count().show()
# Output:
# +---------+-----+
# |age_group|count|
# +---------+-----+
# |       20|    2|
# |       30|    3|
# |       40|    1|
# +---------+-----+
Source code in src/fenic/api/dataframe/dataframe.py
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
def group_by(self, *cols: ColumnOrName) -> GroupedData:
    """Groups the DataFrame using the specified columns.

    Args:
        *cols: Columns to group by. Can be column names as strings or Column expressions.

    Returns:
        GroupedData: Object for performing aggregations on the grouped data.

    Example: Group by single column
        ```python
        # Create sample DataFrame
        df = session.create_dataframe({
            "department": ["IT", "HR", "IT", "HR", "IT"],
            "salary": [80000, 70000, 90000, 75000, 85000]
        })

        # Group by single column
        df.group_by(col("department")).count().show()
        # Output:
        # +----------+-----+
        # |department|count|
        # +----------+-----+
        # |        IT|    3|
        # |        HR|    2|
        # +----------+-----+
        ```

    Example: Group by multiple columns
        ```python
        # Group by multiple columns
        df.group_by(col("department"), col("location")).agg({"salary": "avg"}).show()
        # Output:
        # +----------+--------+-----------+
        # |department|location|avg(salary)|
        # +----------+--------+-----------+
        # |        IT|    NYC|    85000.0|
        # |        HR|    NYC|    72500.0|
        # +----------+--------+-----------+
        ```

    Example: Group by expression
        ```python
        # Group by expression
        df.group_by(col("age").cast("int").alias("age_group")).count().show()
        # Output:
        # +---------+-----+
        # |age_group|count|
        # +---------+-----+
        # |       20|    2|
        # |       30|    3|
        # |       40|    1|
        # +---------+-----+
        ```
    """
    return GroupedData(self, list(cols) if cols else None)

join

join(other: DataFrame, on: Union[str, List[str]], *, how: JoinType = 'inner') -> DataFrame
join(other: DataFrame, *, left_on: Union[ColumnOrName, List[ColumnOrName]], right_on: Union[ColumnOrName, List[ColumnOrName]], how: JoinType = 'inner') -> DataFrame
join(other: DataFrame, on: Optional[Union[str, List[str]]] = None, *, left_on: Optional[Union[ColumnOrName, List[ColumnOrName]]] = None, right_on: Optional[Union[ColumnOrName, List[ColumnOrName]]] = None, how: JoinType = 'inner') -> DataFrame

Joins this DataFrame with another DataFrame.

The Dataframes must have no duplicate column names between them. This API only supports equi-joins. For non-equi-joins, use session.sql().

Parameters:

  • other (DataFrame) –

    DataFrame to join with.

  • on (Optional[Union[str, List[str]]], default: None ) –

    Join condition(s). Can be: - A column name (str) - A list of column names (List[str]) - A Column expression (e.g., col('a')) - A list of Column expressions - None for cross joins

  • left_on (Optional[Union[ColumnOrName, List[ColumnOrName]]], default: None ) –

    Column(s) from the left DataFrame to join on. Can be: - A column name (str) - A Column expression (e.g., col('a'), col('a') + 1) - A list of column names or expressions

  • right_on (Optional[Union[ColumnOrName, List[ColumnOrName]]], default: None ) –

    Column(s) from the right DataFrame to join on. Can be: - A column name (str) - A Column expression (e.g., col('b'), upper(col('b'))) - A list of column names or expressions

  • how (JoinType, default: 'inner' ) –

    Type of join to perform.

Returns:

Raises:

Inner join on column name
# Create sample DataFrames
df1 = session.create_dataframe({
    "id": [1, 2, 3],
    "name": ["Alice", "Bob", "Charlie"]
})
df2 = session.create_dataframe({
    "id": [1, 2, 4],
    "age": [25, 30, 35]
})

# Join on single column
df1.join(df2, on=col("id")).show()
# Output:
# +---+-----+---+
# | id| name|age|
# +---+-----+---+
# |  1|Alice| 25|
# |  2|  Bob| 30|
# +---+-----+---+
Join with expression
# Join with Column expressions
df1.join(
    df2,
    left_on=col("id"),
    right_on=col("id"),
).show()
# Output:
# +---+-----+---+
# | id| name|age|
# +---+-----+---+
# |  1|Alice| 25|
# |  2|  Bob| 30|
# +---+-----+---+
Cross join
# Cross join (cartesian product)
df1.join(df2, how="cross").show()
# Output:
# +---+-----+---+---+
# | id| name| id|age|
# +---+-----+---+---+
# |  1|Alice|  1| 25|
# |  1|Alice|  2| 30|
# |  1|Alice|  4| 35|
# |  2|  Bob|  1| 25|
# |  2|  Bob|  2| 30|
# |  2|  Bob|  4| 35|
# |  3|Charlie| 1| 25|
# |  3|Charlie| 2| 30|
# |  3|Charlie| 4| 35|
# +---+-----+---+---+
Source code in src/fenic/api/dataframe/dataframe.py
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
def join(
    self,
    other: DataFrame,
    on: Optional[Union[str, List[str]]] = None,
    *,
    left_on: Optional[Union[ColumnOrName, List[ColumnOrName]]] = None,
    right_on: Optional[Union[ColumnOrName, List[ColumnOrName]]] = None,
    how: JoinType = "inner",
) -> DataFrame:
    """Joins this DataFrame with another DataFrame.

    The Dataframes must have no duplicate column names between them. This API only supports equi-joins.
    For non-equi-joins, use session.sql().

    Args:
        other: DataFrame to join with.
        on: Join condition(s). Can be:
            - A column name (str)
            - A list of column names (List[str])
            - A Column expression (e.g., col('a'))
            - A list of Column expressions
            - `None` for cross joins
        left_on: Column(s) from the left DataFrame to join on. Can be:
            - A column name (str)
            - A Column expression (e.g., col('a'), col('a') + 1)
            - A list of column names or expressions
        right_on: Column(s) from the right DataFrame to join on. Can be:
            - A column name (str)
            - A Column expression (e.g., col('b'), upper(col('b')))
            - A list of column names or expressions
        how: Type of join to perform.

    Returns:
        Joined DataFrame.

    Raises:
        ValidationError: If cross join is used with an ON clause.
        ValidationError: If join condition is invalid.
        ValidationError: If both 'on' and 'left_on'/'right_on' parameters are provided.
        ValidationError: If only one of 'left_on' or 'right_on' is provided.
        ValidationError: If 'left_on' and 'right_on' have different lengths

    Example: Inner join on column name
        ```python
        # Create sample DataFrames
        df1 = session.create_dataframe({
            "id": [1, 2, 3],
            "name": ["Alice", "Bob", "Charlie"]
        })
        df2 = session.create_dataframe({
            "id": [1, 2, 4],
            "age": [25, 30, 35]
        })

        # Join on single column
        df1.join(df2, on=col("id")).show()
        # Output:
        # +---+-----+---+
        # | id| name|age|
        # +---+-----+---+
        # |  1|Alice| 25|
        # |  2|  Bob| 30|
        # +---+-----+---+
        ```

    Example: Join with expression
        ```python
        # Join with Column expressions
        df1.join(
            df2,
            left_on=col("id"),
            right_on=col("id"),
        ).show()
        # Output:
        # +---+-----+---+
        # | id| name|age|
        # +---+-----+---+
        # |  1|Alice| 25|
        # |  2|  Bob| 30|
        # +---+-----+---+
        ```

    Example: Cross join
        ```python
        # Cross join (cartesian product)
        df1.join(df2, how="cross").show()
        # Output:
        # +---+-----+---+---+
        # | id| name| id|age|
        # +---+-----+---+---+
        # |  1|Alice|  1| 25|
        # |  1|Alice|  2| 30|
        # |  1|Alice|  4| 35|
        # |  2|  Bob|  1| 25|
        # |  2|  Bob|  2| 30|
        # |  2|  Bob|  4| 35|
        # |  3|Charlie| 1| 25|
        # |  3|Charlie| 2| 30|
        # |  3|Charlie| 4| 35|
        # +---+-----+---+---+
        ```
    """
    validate_join_parameters(self, on, left_on, right_on, how)

    # Build join conditions
    left_conditions, right_conditions = build_join_conditions(on, left_on, right_on)

    return self._from_logical_plan(
        Join(self._logical_plan, other._logical_plan, left_conditions, right_conditions, how),
    )

limit

limit(n: int) -> DataFrame

Limits the number of rows to the specified number.

Parameters:

  • n (int) –

    Maximum number of rows to return.

Returns:

  • DataFrame ( DataFrame ) –

    DataFrame with at most n rows.

Raises:

  • TypeError

    If n is not an integer.

Limit rows
# Create sample DataFrame
df = session.create_dataframe({
    "id": [1, 2, 3, 4, 5],
    "name": ["Alice", "Bob", "Charlie", "Dave", "Eve"]
})

# Get first 3 rows
df.limit(3).show()
# Output:
# +---+-------+
# | id|   name|
# +---+-------+
# |  1|  Alice|
# |  2|    Bob|
# |  3|Charlie|
# +---+-------+
Limit with other operations
# Limit after filtering
df.filter(col("id") > 2).limit(2).show()
# Output:
# +---+-------+
# | id|   name|
# +---+-------+
# |  3|Charlie|
# |  4|   Dave|
# +---+-------+
Source code in src/fenic/api/dataframe/dataframe.py
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
def limit(self, n: int) -> DataFrame:
    """Limits the number of rows to the specified number.

    Args:
        n: Maximum number of rows to return.

    Returns:
        DataFrame: DataFrame with at most n rows.

    Raises:
        TypeError: If n is not an integer.

    Example: Limit rows
        ```python
        # Create sample DataFrame
        df = session.create_dataframe({
            "id": [1, 2, 3, 4, 5],
            "name": ["Alice", "Bob", "Charlie", "Dave", "Eve"]
        })

        # Get first 3 rows
        df.limit(3).show()
        # Output:
        # +---+-------+
        # | id|   name|
        # +---+-------+
        # |  1|  Alice|
        # |  2|    Bob|
        # |  3|Charlie|
        # +---+-------+
        ```

    Example: Limit with other operations
        ```python
        # Limit after filtering
        df.filter(col("id") > 2).limit(2).show()
        # Output:
        # +---+-------+
        # | id|   name|
        # +---+-------+
        # |  3|Charlie|
        # |  4|   Dave|
        # +---+-------+
        ```
    """
    return self._from_logical_plan(Limit(self._logical_plan, n))

lineage

lineage() -> Lineage

Create a Lineage object to trace data through transformations.

The Lineage interface allows you to trace how specific rows are transformed through your DataFrame operations, both forwards and backwards through the computation graph.

Returns:

  • Lineage ( Lineage ) –

    Interface for querying data lineage

Example
# Create lineage query
lineage = df.lineage()

# Trace specific rows backwards through transformations
source_rows = lineage.backward(["result_uuid1", "result_uuid2"])

# Or trace forwards to see outputs
result_rows = lineage.forward(["source_uuid1"])
See Also

LineageQuery: Full documentation of lineage querying capabilities

Source code in src/fenic/api/dataframe/dataframe.py
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
def lineage(self) -> Lineage:
    """Create a Lineage object to trace data through transformations.

    The Lineage interface allows you to trace how specific rows are transformed
    through your DataFrame operations, both forwards and backwards through the
    computation graph.

    Returns:
        Lineage: Interface for querying data lineage

    Example:
        ```python
        # Create lineage query
        lineage = df.lineage()

        # Trace specific rows backwards through transformations
        source_rows = lineage.backward(["result_uuid1", "result_uuid2"])

        # Or trace forwards to see outputs
        result_rows = lineage.forward(["source_uuid1"])
        ```

    See Also:
        LineageQuery: Full documentation of lineage querying capabilities
    """
    return Lineage(self._logical_plan.session_state.execution.build_lineage(self._logical_plan))

order_by

order_by(cols: Union[ColumnOrName, List[ColumnOrName], None] = None, ascending: Optional[Union[bool, List[bool]]] = None) -> 'DataFrame'

Sort the DataFrame by the specified columns. Alias for sort().

Returns:

  • DataFrame ( 'DataFrame' ) –

    sorted Dataframe.

See Also

sort(): Full documentation of sorting behavior and parameters.

Source code in src/fenic/api/dataframe/dataframe.py
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
def order_by(
    self,
    cols: Union[ColumnOrName, List[ColumnOrName], None] = None,
    ascending: Optional[Union[bool, List[bool]]] = None,
) -> "DataFrame":
    """Sort the DataFrame by the specified columns. Alias for sort().

    Returns:
        DataFrame: sorted Dataframe.

    See Also:
        sort(): Full documentation of sorting behavior and parameters.
    """
    return self.sort(cols, ascending)

persist

persist() -> DataFrame

Mark this DataFrame to be persisted after first computation.

The persisted DataFrame will be cached after its first computation, avoiding recomputation in subsequent operations. This is useful for DataFrames that are reused multiple times in your workflow.

Returns:

  • DataFrame ( DataFrame ) –

    Same DataFrame, but marked for persistence

Example
# Cache intermediate results for reuse
filtered_df = (df
    .filter(col("age") > 25)
    .persist()  # Cache these results
)

# Both operations will use cached results
result1 = filtered_df.group_by("department").count()
result2 = filtered_df.select("name", "salary")
Source code in src/fenic/api/dataframe/dataframe.py
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
def persist(self) -> DataFrame:
    """Mark this DataFrame to be persisted after first computation.

    The persisted DataFrame will be cached after its first computation,
    avoiding recomputation in subsequent operations. This is useful for DataFrames
    that are reused multiple times in your workflow.

    Returns:
        DataFrame: Same DataFrame, but marked for persistence

    Example:
        ```python
        # Cache intermediate results for reuse
        filtered_df = (df
            .filter(col("age") > 25)
            .persist()  # Cache these results
        )

        # Both operations will use cached results
        result1 = filtered_df.group_by("department").count()
        result2 = filtered_df.select("name", "salary")
        ```
    """
    table_name = f"cache_{uuid.uuid4().hex}"
    cache_info = CacheInfo(duckdb_table_name=table_name)
    self._logical_plan.set_cache_info(cache_info)
    return self._from_logical_plan(self._logical_plan)

select

select(*cols: ColumnOrName) -> DataFrame

Projects a set of Column expressions or column names.

Parameters:

  • *cols (ColumnOrName, default: () ) –

    Column expressions to select. Can be: - String column names (e.g., "id", "name") - Column objects (e.g., col("id"), col("age") + 1)

Returns:

  • DataFrame ( DataFrame ) –

    A new DataFrame with selected columns

Select by column names
# Create a DataFrame
df = session.create_dataframe({"name": ["Alice", "Bob"], "age": [25, 30]})

# Select by column names
df.select(col("name"), col("age")).show()
# Output:
# +-----+---+
# | name|age|
# +-----+---+
# |Alice| 25|
# |  Bob| 30|
# +-----+---+
Select with expressions
# Select with expressions
df.select(col("name"), col("age") + 1).show()
# Output:
# +-----+-------+
# | name|age + 1|
# +-----+-------+
# |Alice|     26|
# |  Bob|     31|
# +-----+-------+
Mix strings and expressions
# Mix strings and expressions
df.select(col("name"), col("age") * 2).show()
# Output:
# +-----+-------+
# | name|age * 2|
# +-----+-------+
# |Alice|     50|
# |  Bob|     60|
# +-----+-------+
Source code in src/fenic/api/dataframe/dataframe.py
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
def select(self, *cols: ColumnOrName) -> DataFrame:
    """Projects a set of Column expressions or column names.

    Args:
        *cols: Column expressions to select. Can be:
            - String column names (e.g., "id", "name")
            - Column objects (e.g., col("id"), col("age") + 1)

    Returns:
        DataFrame: A new DataFrame with selected columns

    Example: Select by column names
        ```python
        # Create a DataFrame
        df = session.create_dataframe({"name": ["Alice", "Bob"], "age": [25, 30]})

        # Select by column names
        df.select(col("name"), col("age")).show()
        # Output:
        # +-----+---+
        # | name|age|
        # +-----+---+
        # |Alice| 25|
        # |  Bob| 30|
        # +-----+---+
        ```

    Example: Select with expressions
        ```python
        # Select with expressions
        df.select(col("name"), col("age") + 1).show()
        # Output:
        # +-----+-------+
        # | name|age + 1|
        # +-----+-------+
        # |Alice|     26|
        # |  Bob|     31|
        # +-----+-------+
        ```

    Example: Mix strings and expressions
        ```python
        # Mix strings and expressions
        df.select(col("name"), col("age") * 2).show()
        # Output:
        # +-----+-------+
        # | name|age * 2|
        # +-----+-------+
        # |Alice|     50|
        # |  Bob|     60|
        # +-----+-------+
        ```
    """
    exprs = []
    if not cols:
        return self
    for c in cols:
        if isinstance(c, str):
            if c == "*":
                exprs.extend(col(field)._logical_expr for field in self.columns)
            else:
                exprs.append(col(c)._logical_expr)
        else:
            exprs.append(c._logical_expr)

    return self._from_logical_plan(
        Projection(self._logical_plan, exprs)
    )

show

show(n: int = 10, explain_analyze: bool = False) -> None

Display the DataFrame content in a tabular form.

This is an action that triggers computation of the DataFrame. The output is printed to stdout in a formatted table.

Parameters:

  • n (int, default: 10 ) –

    Number of rows to display

  • explain_analyze (bool, default: False ) –

    Whether to print the explain analyze plan

Source code in src/fenic/api/dataframe/dataframe.py
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
def show(self, n: int = 10, explain_analyze: bool = False) -> None:
    """Display the DataFrame content in a tabular form.

    This is an action that triggers computation of the DataFrame.
    The output is printed to stdout in a formatted table.

    Args:
        n: Number of rows to display
        explain_analyze: Whether to print the explain analyze plan
    """
    output, metrics = self._logical_plan.session_state.execution.show(self._logical_plan, n)
    logger.info(metrics.get_summary())
    print(output)
    if explain_analyze:
        print(metrics.get_execution_plan_details())

sort

sort(cols: Union[ColumnOrName, List[ColumnOrName], None] = None, ascending: Optional[Union[bool, List[bool]]] = None) -> DataFrame

Sort the DataFrame by the specified columns.

Parameters:

  • cols (Union[ColumnOrName, List[ColumnOrName], None], default: None ) –

    Columns to sort by. This can be: - A single column name (str) - A Column expression (e.g., col("name")) - A list of column names or Column expressions - Column expressions may include sorting directives such as asc("col"), desc("col"), asc_nulls_last("col"), etc. - If no columns are provided, the operation is a no-op.

  • ascending (Optional[Union[bool, List[bool]]], default: None ) –

    A boolean or list of booleans indicating sort order. - If True, sorts in ascending order; if False, descending. - If a list is provided, its length must match the number of columns. - Cannot be used if any of the columns use asc()/desc() expressions. - If not specified and no sort expressions are used, columns will be sorted in ascending order by default.

Returns:

  • DataFrame ( DataFrame ) –

    A new DataFrame sorted by the specified columns.

Raises:

  • ValueError
    • If ascending is provided and its length does not match cols
    • If both ascending and column expressions like asc()/desc() are used
  • TypeError
    • If cols is not a column name, Column, or list of column names/Columns
    • If ascending is not a boolean or list of booleans
Sort in ascending order
# Create sample DataFrame
df = session.create_dataframe([(2, "Alice"), (5, "Bob")], schema=["age", "name"])

# Sort by age in ascending order
df.sort(asc(col("age"))).show()
# Output:
# +---+-----+
# |age| name|
# +---+-----+
# |  2|Alice|
# |  5|  Bob|
# +---+-----+
Sort in descending order
# Sort by age in descending order
df.sort(col("age").desc()).show()
# Output:
# +---+-----+
# |age| name|
# +---+-----+
# |  5|  Bob|
# |  2|Alice|
# +---+-----+
Sort with boolean ascending parameter
# Sort by age in descending order using boolean
df.sort(col("age"), ascending=False).show()
# Output:
# +---+-----+
# |age| name|
# +---+-----+
# |  5|  Bob|
# |  2|Alice|
# +---+-----+
Multiple columns with different sort orders
# Create sample DataFrame
df = session.create_dataframe([(2, "Alice"), (2, "Bob"), (5, "Bob")], schema=["age", "name"])

# Sort by age descending, then name ascending
df.sort(desc(col("age")), col("name")).show()
# Output:
# +---+-----+
# |age| name|
# +---+-----+
# |  5|  Bob|
# |  2|Alice|
# |  2|  Bob|
# +---+-----+
Multiple columns with list of ascending strategies
# Sort both columns in descending order
df.sort([col("age"), col("name")], ascending=[False, False]).show()
# Output:
# +---+-----+
# |age| name|
# +---+-----+
# |  5|  Bob|
# |  2|  Bob|
# |  2|Alice|
# +---+-----+
Source code in src/fenic/api/dataframe/dataframe.py
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
def sort(
    self,
    cols: Union[ColumnOrName, List[ColumnOrName], None] = None,
    ascending: Optional[Union[bool, List[bool]]] = None,
) -> DataFrame:
    """Sort the DataFrame by the specified columns.

    Args:
        cols: Columns to sort by. This can be:
            - A single column name (str)
            - A Column expression (e.g., `col("name")`)
            - A list of column names or Column expressions
            - Column expressions may include sorting directives such as `asc("col")`, `desc("col")`,
            `asc_nulls_last("col")`, etc.
            - If no columns are provided, the operation is a no-op.

        ascending: A boolean or list of booleans indicating sort order.
            - If `True`, sorts in ascending order; if `False`, descending.
            - If a list is provided, its length must match the number of columns.
            - Cannot be used if any of the columns use `asc()`/`desc()` expressions.
            - If not specified and no sort expressions are used, columns will be sorted in ascending order by default.

    Returns:
        DataFrame: A new DataFrame sorted by the specified columns.

    Raises:
        ValueError:
            - If `ascending` is provided and its length does not match `cols`
            - If both `ascending` and column expressions like `asc()`/`desc()` are used
        TypeError:
            - If `cols` is not a column name, Column, or list of column names/Columns
            - If `ascending` is not a boolean or list of booleans

    Example: Sort in ascending order
        ```python
        # Create sample DataFrame
        df = session.create_dataframe([(2, "Alice"), (5, "Bob")], schema=["age", "name"])

        # Sort by age in ascending order
        df.sort(asc(col("age"))).show()
        # Output:
        # +---+-----+
        # |age| name|
        # +---+-----+
        # |  2|Alice|
        # |  5|  Bob|
        # +---+-----+
        ```

    Example: Sort in descending order
        ```python
        # Sort by age in descending order
        df.sort(col("age").desc()).show()
        # Output:
        # +---+-----+
        # |age| name|
        # +---+-----+
        # |  5|  Bob|
        # |  2|Alice|
        # +---+-----+
        ```

    Example: Sort with boolean ascending parameter
        ```python
        # Sort by age in descending order using boolean
        df.sort(col("age"), ascending=False).show()
        # Output:
        # +---+-----+
        # |age| name|
        # +---+-----+
        # |  5|  Bob|
        # |  2|Alice|
        # +---+-----+
        ```

    Example: Multiple columns with different sort orders
        ```python
        # Create sample DataFrame
        df = session.create_dataframe([(2, "Alice"), (2, "Bob"), (5, "Bob")], schema=["age", "name"])

        # Sort by age descending, then name ascending
        df.sort(desc(col("age")), col("name")).show()
        # Output:
        # +---+-----+
        # |age| name|
        # +---+-----+
        # |  5|  Bob|
        # |  2|Alice|
        # |  2|  Bob|
        # +---+-----+
        ```

    Example: Multiple columns with list of ascending strategies
        ```python
        # Sort both columns in descending order
        df.sort([col("age"), col("name")], ascending=[False, False]).show()
        # Output:
        # +---+-----+
        # |age| name|
        # +---+-----+
        # |  5|  Bob|
        # |  2|  Bob|
        # |  2|Alice|
        # +---+-----+
        ```
    """
    col_args = cols
    if cols is None:
        return self._from_logical_plan(
            Sort(self._logical_plan, [])
        )
    elif not isinstance(cols, List):
        col_args = [cols]

    # parse the ascending arguments
    bool_ascending = []
    using_default_ascending = False
    if ascending is None:
        using_default_ascending = True
        bool_ascending = [True] * len(col_args)
    elif isinstance(ascending, bool):
        bool_ascending = [ascending] * len(col_args)
    elif isinstance(ascending, List):
        bool_ascending = ascending
        if len(bool_ascending) != len(cols):
            raise ValueError(
                f"the list length of ascending sort strategies must match the specified sort columns"
                f"Got {len(cols)} column expressions and {len(bool_ascending)} ascending strategies. "
            )
    else:
        raise TypeError(
            f"Invalid ascending strategy type: {type(ascending)}.  Must be a boolean or list of booleans."
        )

    # create our list of sort expressions, for each column expression
    # that isn't already provided as a asc()/desc() SortExpr
    sort_exprs = []
    for c, asc_bool in zip(col_args, bool_ascending, strict=True):
        if isinstance(c, ColumnOrName):
            c_expr = Column._from_col_or_name(c)._logical_expr
        else:
            raise TypeError(
                f"Invalid column type: {type(c).__name__}.  Must be a string or Column Expression."
            )
        if not isinstance(asc_bool, bool):
            raise TypeError(
                f"Invalid ascending strategy type: {type(asc_bool).__name__}.  Must be a boolean."
            )
        if isinstance(c_expr, SortExpr):
            if not using_default_ascending:
                raise TypeError(
                    "Cannot specify both asc()/desc() expressions and boolean ascending strategies."
                    f"Got expression: {c_expr} and ascending argument: {bool_ascending}"
                )
            sort_exprs.append(c_expr)
        else:
            sort_exprs.append(SortExpr(c_expr, ascending=asc_bool))

    return self._from_logical_plan(
        Sort(self._logical_plan, sort_exprs),
    )

to_arrow

to_arrow() -> pa.Table

Execute the DataFrame computation and return an Apache Arrow Table.

This is an action that triggers computation of the DataFrame query plan. All transformations and operations are executed, and the results are materialized into an Apache Arrow Table with columnar memory layout optimized for analytics and zero-copy data exchange.

Returns:

  • Table

    pa.Table: An Apache Arrow Table containing the computed results

Source code in src/fenic/api/dataframe/dataframe.py
295
296
297
298
299
300
301
302
303
304
305
306
def to_arrow(self) -> pa.Table:
    """Execute the DataFrame computation and return an Apache Arrow Table.

    This is an action that triggers computation of the DataFrame query plan.
    All transformations and operations are executed, and the results are
    materialized into an Apache Arrow Table with columnar memory layout
    optimized for analytics and zero-copy data exchange.

    Returns:
        pa.Table: An Apache Arrow Table containing the computed results
    """
    return self.collect("arrow").data

to_pandas

to_pandas() -> pd.DataFrame

Execute the DataFrame computation and return a Pandas DataFrame.

This is an action that triggers computation of the DataFrame query plan. All transformations and operations are executed, and the results are materialized into a Pandas DataFrame.

Returns:

  • DataFrame

    pd.DataFrame: A Pandas DataFrame containing the computed results with

Source code in src/fenic/api/dataframe/dataframe.py
283
284
285
286
287
288
289
290
291
292
293
def to_pandas(self) -> pd.DataFrame:
    """Execute the DataFrame computation and return a Pandas DataFrame.

    This is an action that triggers computation of the DataFrame query plan.
    All transformations and operations are executed, and the results are
    materialized into a Pandas DataFrame.

    Returns:
        pd.DataFrame: A Pandas DataFrame containing the computed results with
    """
    return self.collect("pandas").data

to_polars

to_polars() -> pl.DataFrame

Execute the DataFrame computation and return the result as a Polars DataFrame.

This is an action that triggers computation of the DataFrame query plan. All transformations and operations are executed, and the results are materialized into a Polars DataFrame.

Returns:

  • DataFrame

    pl.DataFrame: A Polars DataFrame with materialized results

Source code in src/fenic/api/dataframe/dataframe.py
271
272
273
274
275
276
277
278
279
280
281
def to_polars(self) -> pl.DataFrame:
    """Execute the DataFrame computation and return the result as a Polars DataFrame.

    This is an action that triggers computation of the DataFrame query plan.
    All transformations and operations are executed, and the results are
    materialized into a Polars DataFrame.

    Returns:
        pl.DataFrame: A Polars DataFrame with materialized results
    """
    return self.collect("polars").data

to_pydict

to_pydict() -> Dict[str, List[Any]]

Execute the DataFrame computation and return a dictionary of column arrays.

This is an action that triggers computation of the DataFrame query plan. All transformations and operations are executed, and the results are materialized into a Python dictionary where each column becomes a list of values.

Returns:

  • Dict[str, List[Any]]

    Dict[str, List[Any]]: A dictionary containing the computed results with: - Keys: Column names as strings - Values: Lists containing all values for each column

Source code in src/fenic/api/dataframe/dataframe.py
308
309
310
311
312
313
314
315
316
317
318
319
320
def to_pydict(self) -> Dict[str, List[Any]]:
    """Execute the DataFrame computation and return a dictionary of column arrays.

    This is an action that triggers computation of the DataFrame query plan.
    All transformations and operations are executed, and the results are
    materialized into a Python dictionary where each column becomes a list of values.

    Returns:
        Dict[str, List[Any]]: A dictionary containing the computed results with:
            - Keys: Column names as strings
            - Values: Lists containing all values for each column
    """
    return self.collect("pydict").data

to_pylist

to_pylist() -> List[Dict[str, Any]]

Execute the DataFrame computation and return a list of row dictionaries.

This is an action that triggers computation of the DataFrame query plan. All transformations and operations are executed, and the results are materialized into a Python list where each element is a dictionary representing one row with column names as keys.

Returns:

  • List[Dict[str, Any]]

    List[Dict[str, Any]]: A list containing the computed results with: - Each element: A dictionary representing one row - Dictionary keys: Column names as strings - Dictionary values: Cell values in Python native types - List length equals number of rows in the result

Source code in src/fenic/api/dataframe/dataframe.py
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
def to_pylist(self) -> List[Dict[str, Any]]:
    """Execute the DataFrame computation and return a list of row dictionaries.

    This is an action that triggers computation of the DataFrame query plan.
    All transformations and operations are executed, and the results are
    materialized into a Python list where each element is a dictionary
    representing one row with column names as keys.

    Returns:
        List[Dict[str, Any]]: A list containing the computed results with:
            - Each element: A dictionary representing one row
            - Dictionary keys: Column names as strings
            - Dictionary values: Cell values in Python native types
            - List length equals number of rows in the result
    """
    return self.collect("pylist").data

union

union(other: DataFrame) -> DataFrame

Return a new DataFrame containing the union of rows in this and another DataFrame.

This is equivalent to UNION ALL in SQL. To remove duplicates, use drop_duplicates() after union().

Parameters:

  • other (DataFrame) –

    Another DataFrame with the same schema.

Returns:

  • DataFrame ( DataFrame ) –

    A new DataFrame containing rows from both DataFrames.

Raises:

  • ValueError

    If the DataFrames have different schemas.

  • TypeError

    If other is not a DataFrame.

Union two DataFrames
# Create two DataFrames
df1 = session.create_dataframe({
    "id": [1, 2],
    "value": ["a", "b"]
})
df2 = session.create_dataframe({
    "id": [3, 4],
    "value": ["c", "d"]
})

# Union the DataFrames
df1.union(df2).show()
# Output:
# +---+-----+
# | id|value|
# +---+-----+
# |  1|    a|
# |  2|    b|
# |  3|    c|
# |  4|    d|
# +---+-----+
Union with duplicates
# Create DataFrames with overlapping data
df1 = session.create_dataframe({
    "id": [1, 2],
    "value": ["a", "b"]
})
df2 = session.create_dataframe({
    "id": [2, 3],
    "value": ["b", "c"]
})

# Union with duplicates
df1.union(df2).show()
# Output:
# +---+-----+
# | id|value|
# +---+-----+
# |  1|    a|
# |  2|    b|
# |  2|    b|
# |  3|    c|
# +---+-----+

# Remove duplicates after union
df1.union(df2).drop_duplicates().show()
# Output:
# +---+-----+
# | id|value|
# +---+-----+
# |  1|    a|
# |  2|    b|
# |  3|    c|
# +---+-----+
Source code in src/fenic/api/dataframe/dataframe.py
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
def union(self, other: DataFrame) -> DataFrame:
    """Return a new DataFrame containing the union of rows in this and another DataFrame.

    This is equivalent to UNION ALL in SQL. To remove duplicates, use drop_duplicates() after union().

    Args:
        other: Another DataFrame with the same schema.

    Returns:
        DataFrame: A new DataFrame containing rows from both DataFrames.

    Raises:
        ValueError: If the DataFrames have different schemas.
        TypeError: If other is not a DataFrame.

    Example: Union two DataFrames
        ```python
        # Create two DataFrames
        df1 = session.create_dataframe({
            "id": [1, 2],
            "value": ["a", "b"]
        })
        df2 = session.create_dataframe({
            "id": [3, 4],
            "value": ["c", "d"]
        })

        # Union the DataFrames
        df1.union(df2).show()
        # Output:
        # +---+-----+
        # | id|value|
        # +---+-----+
        # |  1|    a|
        # |  2|    b|
        # |  3|    c|
        # |  4|    d|
        # +---+-----+
        ```

    Example: Union with duplicates
        ```python
        # Create DataFrames with overlapping data
        df1 = session.create_dataframe({
            "id": [1, 2],
            "value": ["a", "b"]
        })
        df2 = session.create_dataframe({
            "id": [2, 3],
            "value": ["b", "c"]
        })

        # Union with duplicates
        df1.union(df2).show()
        # Output:
        # +---+-----+
        # | id|value|
        # +---+-----+
        # |  1|    a|
        # |  2|    b|
        # |  2|    b|
        # |  3|    c|
        # +---+-----+

        # Remove duplicates after union
        df1.union(df2).drop_duplicates().show()
        # Output:
        # +---+-----+
        # | id|value|
        # +---+-----+
        # |  1|    a|
        # |  2|    b|
        # |  3|    c|
        # +---+-----+
        ```
    """
    return self._from_logical_plan(
        UnionLogicalPlan([self._logical_plan, other._logical_plan]),
    )

unnest

unnest(*col_names: str) -> DataFrame

Unnest the specified struct columns into separate columns.

This operation flattens nested struct data by expanding each field of a struct into its own top-level column.

For each specified column containing a struct: 1. Each field in the struct becomes a separate column. 2. New columns are named after the corresponding struct fields. 3. The new columns are inserted into the DataFrame in place of the original struct column. 4. The overall column order is preserved.

Parameters:

  • *col_names (str, default: () ) –

    One or more struct columns to unnest. Each can be a string (column name) or a Column expression.

Returns:

  • DataFrame ( DataFrame ) –

    A new DataFrame with the specified struct columns expanded.

Raises:

  • TypeError

    If any argument is not a string or Column.

  • ValueError

    If a specified column does not contain struct data.

Unnest struct column
# Create sample DataFrame
df = session.create_dataframe({
    "id": [1, 2],
    "tags": [{"red": 1, "blue": 2}, {"red": 3}],
    "name": ["Alice", "Bob"]
})

# Unnest the tags column
df.unnest(col("tags")).show()
# Output:
# +---+---+----+-----+
# | id| red|blue| name|
# +---+---+----+-----+
# |  1|  1|   2|Alice|
# |  2|  3|null|  Bob|
# +---+---+----+-----+
Unnest multiple struct columns
# Create sample DataFrame with multiple struct columns
df = session.create_dataframe({
    "id": [1, 2],
    "tags": [{"red": 1, "blue": 2}, {"red": 3}],
    "info": [{"age": 25, "city": "NY"}, {"age": 30, "city": "LA"}],
    "name": ["Alice", "Bob"]
})

# Unnest multiple struct columns
df.unnest(col("tags"), col("info")).show()
# Output:
# +---+---+----+---+----+-----+
# | id| red|blue|age|city| name|
# +---+---+----+---+----+-----+
# |  1|  1|   2| 25|  NY|Alice|
# |  2|  3|null| 30|  LA|  Bob|
# +---+---+----+---+----+-----+
Source code in src/fenic/api/dataframe/dataframe.py
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
def unnest(self, *col_names: str) -> DataFrame:
    """Unnest the specified struct columns into separate columns.

    This operation flattens nested struct data by expanding each field of a struct
    into its own top-level column.

    For each specified column containing a struct:
    1. Each field in the struct becomes a separate column.
    2. New columns are named after the corresponding struct fields.
    3. The new columns are inserted into the DataFrame in place of the original struct column.
    4. The overall column order is preserved.

    Args:
        *col_names: One or more struct columns to unnest. Each can be a string (column name)
            or a Column expression.

    Returns:
        DataFrame: A new DataFrame with the specified struct columns expanded.

    Raises:
        TypeError: If any argument is not a string or Column.
        ValueError: If a specified column does not contain struct data.

    Example: Unnest struct column
        ```python
        # Create sample DataFrame
        df = session.create_dataframe({
            "id": [1, 2],
            "tags": [{"red": 1, "blue": 2}, {"red": 3}],
            "name": ["Alice", "Bob"]
        })

        # Unnest the tags column
        df.unnest(col("tags")).show()
        # Output:
        # +---+---+----+-----+
        # | id| red|blue| name|
        # +---+---+----+-----+
        # |  1|  1|   2|Alice|
        # |  2|  3|null|  Bob|
        # +---+---+----+-----+
        ```

    Example: Unnest multiple struct columns
        ```python
        # Create sample DataFrame with multiple struct columns
        df = session.create_dataframe({
            "id": [1, 2],
            "tags": [{"red": 1, "blue": 2}, {"red": 3}],
            "info": [{"age": 25, "city": "NY"}, {"age": 30, "city": "LA"}],
            "name": ["Alice", "Bob"]
        })

        # Unnest multiple struct columns
        df.unnest(col("tags"), col("info")).show()
        # Output:
        # +---+---+----+---+----+-----+
        # | id| red|blue|age|city| name|
        # +---+---+----+---+----+-----+
        # |  1|  1|   2| 25|  NY|Alice|
        # |  2|  3|null| 30|  LA|  Bob|
        # +---+---+----+---+----+-----+
        ```
    """
    if not col_names:
        return self
    exprs = []
    for c in col_names:
        if c not in self.columns:
            raise TypeError(f"Column {c} not found in DataFrame.")
        exprs.append(col(c)._logical_expr)
    return self._from_logical_plan(
        Unnest(self._logical_plan, exprs),
    )

where

where(condition: Column) -> DataFrame

Filters rows using the given condition (alias for filter()).

Parameters:

  • condition (Column) –

    A Column expression that evaluates to a boolean

Returns:

  • DataFrame ( DataFrame ) –

    Filtered DataFrame

See Also

filter(): Full documentation of filtering behavior

Source code in src/fenic/api/dataframe/dataframe.py
485
486
487
488
489
490
491
492
493
494
495
496
497
def where(self, condition: Column) -> DataFrame:
    """Filters rows using the given condition (alias for filter()).

    Args:
        condition: A Column expression that evaluates to a boolean

    Returns:
        DataFrame: Filtered DataFrame

    See Also:
        filter(): Full documentation of filtering behavior
    """
    return self.filter(condition)

with_column

with_column(col_name: str, col: Union[Any, Column]) -> DataFrame

Add a new column or replace an existing column.

Parameters:

  • col_name (str) –

    Name of the new column

  • col (Union[Any, Column]) –

    Column expression or value to assign to the column. If not a Column, it will be treated as a literal value.

Returns:

  • DataFrame ( DataFrame ) –

    New DataFrame with added/replaced column

Add literal column
# Create a DataFrame
df = session.create_dataframe({"name": ["Alice", "Bob"], "age": [25, 30]})

# Add literal column
df.with_column("constant", lit(1)).show()
# Output:
# +-----+---+--------+
# | name|age|constant|
# +-----+---+--------+
# |Alice| 25|       1|
# |  Bob| 30|       1|
# +-----+---+--------+
Add computed column
# Add computed column
df.with_column("double_age", col("age") * 2).show()
# Output:
# +-----+---+----------+
# | name|age|double_age|
# +-----+---+----------+
# |Alice| 25|        50|
# |  Bob| 30|        60|
# +-----+---+----------+
Replace existing column
# Replace existing column
df.with_column("age", col("age") + 1).show()
# Output:
# +-----+---+
# | name|age|
# +-----+---+
# |Alice| 26|
# |  Bob| 31|
# +-----+---+
Add column with complex expression
# Add column with complex expression
df.with_column(
    "age_category",
    when(col("age") < 30, "young")
    .when(col("age") < 50, "middle")
    .otherwise("senior")
).show()
# Output:
# +-----+---+------------+
# | name|age|age_category|
# +-----+---+------------+
# |Alice| 25|       young|
# |  Bob| 30|     middle|
# +-----+---+------------+
Source code in src/fenic/api/dataframe/dataframe.py
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
def with_column(self, col_name: str, col: Union[Any, Column]) -> DataFrame:
    """Add a new column or replace an existing column.

    Args:
        col_name: Name of the new column
        col: Column expression or value to assign to the column. If not a Column,
            it will be treated as a literal value.

    Returns:
        DataFrame: New DataFrame with added/replaced column

    Example: Add literal column
        ```python
        # Create a DataFrame
        df = session.create_dataframe({"name": ["Alice", "Bob"], "age": [25, 30]})

        # Add literal column
        df.with_column("constant", lit(1)).show()
        # Output:
        # +-----+---+--------+
        # | name|age|constant|
        # +-----+---+--------+
        # |Alice| 25|       1|
        # |  Bob| 30|       1|
        # +-----+---+--------+
        ```

    Example: Add computed column
        ```python
        # Add computed column
        df.with_column("double_age", col("age") * 2).show()
        # Output:
        # +-----+---+----------+
        # | name|age|double_age|
        # +-----+---+----------+
        # |Alice| 25|        50|
        # |  Bob| 30|        60|
        # +-----+---+----------+
        ```

    Example: Replace existing column
        ```python
        # Replace existing column
        df.with_column("age", col("age") + 1).show()
        # Output:
        # +-----+---+
        # | name|age|
        # +-----+---+
        # |Alice| 26|
        # |  Bob| 31|
        # +-----+---+
        ```

    Example: Add column with complex expression
        ```python
        # Add column with complex expression
        df.with_column(
            "age_category",
            when(col("age") < 30, "young")
            .when(col("age") < 50, "middle")
            .otherwise("senior")
        ).show()
        # Output:
        # +-----+---+------------+
        # | name|age|age_category|
        # +-----+---+------------+
        # |Alice| 25|       young|
        # |  Bob| 30|     middle|
        # +-----+---+------------+
        ```
    """
    exprs = []
    if not isinstance(col, Column):
        col = lit(col)

    for field in self.columns:
        if field != col_name:
            exprs.append(Column._from_column_name(field)._logical_expr)

    # Add the new column with alias
    exprs.append(col.alias(col_name)._logical_expr)

    return self._from_logical_plan(
        Projection(self._logical_plan, exprs)
    )

with_column_renamed

with_column_renamed(col_name: str, new_col_name: str) -> DataFrame

Rename a column. No-op if the column does not exist.

Parameters:

  • col_name (str) –

    Name of the column to rename.

  • new_col_name (str) –

    New name for the column.

Returns:

  • DataFrame ( DataFrame ) –

    New DataFrame with the column renamed.

Rename a column
# Create sample DataFrame
df = session.create_dataframe({
    "age": [25, 30, 35],
    "name": ["Alice", "Bob", "Charlie"]
})

# Rename a column
df.with_column_renamed("age", "age_in_years").show()
# Output:
# +------------+-------+
# |age_in_years|   name|
# +------------+-------+
# |         25|  Alice|
# |         30|    Bob|
# |         35|Charlie|
# +------------+-------+
Rename multiple columns
# Rename multiple columns
df = (df
    .with_column_renamed("age", "age_in_years")
    .with_column_renamed("name", "full_name")
).show()
# Output:
# +------------+----------+
# |age_in_years|full_name |
# +------------+----------+
# |         25|     Alice|
# |         30|       Bob|
# |         35|   Charlie|
# +------------+----------+
Source code in src/fenic/api/dataframe/dataframe.py
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
def with_column_renamed(self, col_name: str, new_col_name: str) -> DataFrame:
    """Rename a column. No-op if the column does not exist.

    Args:
        col_name: Name of the column to rename.
        new_col_name: New name for the column.

    Returns:
        DataFrame: New DataFrame with the column renamed.

    Example: Rename a column
        ```python
        # Create sample DataFrame
        df = session.create_dataframe({
            "age": [25, 30, 35],
            "name": ["Alice", "Bob", "Charlie"]
        })

        # Rename a column
        df.with_column_renamed("age", "age_in_years").show()
        # Output:
        # +------------+-------+
        # |age_in_years|   name|
        # +------------+-------+
        # |         25|  Alice|
        # |         30|    Bob|
        # |         35|Charlie|
        # +------------+-------+
        ```

    Example: Rename multiple columns
        ```python
        # Rename multiple columns
        df = (df
            .with_column_renamed("age", "age_in_years")
            .with_column_renamed("name", "full_name")
        ).show()
        # Output:
        # +------------+----------+
        # |age_in_years|full_name |
        # +------------+----------+
        # |         25|     Alice|
        # |         30|       Bob|
        # |         35|   Charlie|
        # +------------+----------+
        ```
    """
    exprs = []
    renamed = False

    for field in self.schema.column_fields:
        name = field.name
        if name == col_name:
            exprs.append(col(name).alias(new_col_name)._logical_expr)
            renamed = True
        else:
            exprs.append(col(name)._logical_expr)

    if not renamed:
        return self

    return self._from_logical_plan(
        Projection(self._logical_plan, exprs)
    )

GroupedData

GroupedData(df: DataFrame, by: Optional[List[ColumnOrName]] = None)

Bases: BaseGroupedData

Methods for aggregations on a grouped DataFrame.

Initialize grouped data.

Parameters:

  • df (DataFrame) –

    The DataFrame to group.

  • by (Optional[List[ColumnOrName]], default: None ) –

    Optional list of columns to group by.

Methods:

  • agg

    Compute aggregations on grouped data and return the result as a DataFrame.

Source code in src/fenic/api/dataframe/grouped_data.py
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
def __init__(self, df: DataFrame, by: Optional[List[ColumnOrName]] = None):
    """Initialize grouped data.

    Args:
        df: The DataFrame to group.
        by: Optional list of columns to group by.
    """
    super().__init__(df)
    self._by: List[Column] = []
    for c in by or []:
        if isinstance(c, str):
            self._by.append(col(c))
        elif isinstance(c, Column):
            # Allow any expression except literals
            if isinstance(c._logical_expr, LiteralExpr):
                raise ValueError(f"Cannot group by literal value: {c}")
            self._by.append(c)
        else:
            raise TypeError(
                f"Group by expressions must be string or Column, got {type(c)}"
            )
    self._by_exprs = [c._logical_expr for c in self._by]

agg

agg(*exprs: Union[Column, Dict[str, str]]) -> DataFrame

Compute aggregations on grouped data and return the result as a DataFrame.

This method applies aggregate functions to the grouped data.

Parameters:

  • *exprs (Union[Column, Dict[str, str]], default: () ) –

    Aggregation expressions. Can be:

    • Column expressions with aggregate functions (e.g., count("*"), sum("amount"))
    • A dictionary mapping column names to aggregate function names (e.g., {"amount": "sum", "age": "avg"})

Returns:

  • DataFrame ( DataFrame ) –

    A new DataFrame with one row per group and columns for group keys and aggregated values

Raises:

  • ValueError

    If arguments are not Column expressions or a dictionary

  • ValueError

    If dictionary values are not valid aggregate function names

Count employees by department
# Group by department and count employees
df.group_by("department").agg(count("*").alias("employee_count"))
Multiple aggregations
# Multiple aggregations
df.group_by("department").agg(
    count("*").alias("employee_count"),
    avg("salary").alias("avg_salary"),
    max("age").alias("max_age")
)
Dictionary style aggregations
# Dictionary style for simple aggregations
df.group_by("department", "location").agg({"salary": "avg", "age": "max"})
Source code in src/fenic/api/dataframe/grouped_data.py
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
def agg(self, *exprs: Union[Column, Dict[str, str]]) -> DataFrame:
    """Compute aggregations on grouped data and return the result as a DataFrame.

    This method applies aggregate functions to the grouped data.

    Args:
        *exprs: Aggregation expressions. Can be:

            - Column expressions with aggregate functions (e.g., `count("*")`, `sum("amount")`)
            - A dictionary mapping column names to aggregate function names (e.g., `{"amount": "sum", "age": "avg"}`)

    Returns:
        DataFrame: A new DataFrame with one row per group and columns for group keys and aggregated values

    Raises:
        ValueError: If arguments are not Column expressions or a dictionary
        ValueError: If dictionary values are not valid aggregate function names

    Example: Count employees by department
        ```python
        # Group by department and count employees
        df.group_by("department").agg(count("*").alias("employee_count"))
        ```

    Example: Multiple aggregations
        ```python
        # Multiple aggregations
        df.group_by("department").agg(
            count("*").alias("employee_count"),
            avg("salary").alias("avg_salary"),
            max("age").alias("max_age")
        )
        ```

    Example: Dictionary style aggregations
        ```python
        # Dictionary style for simple aggregations
        df.group_by("department", "location").agg({"salary": "avg", "age": "max"})
        ```
    """
    self._validate_agg_exprs(*exprs)
    if len(exprs) == 1 and isinstance(exprs[0], dict):
        agg_dict = exprs[0]
        return self.agg(*self._process_agg_dict(agg_dict))

    agg_exprs = self._process_agg_exprs(exprs)
    return self._df._from_logical_plan(
        Aggregate(self._df._logical_plan, self._by_exprs, agg_exprs),
    )

SemanticExtensions

SemanticExtensions(df: DataFrame)

A namespace for semantic dataframe operators.

Initialize semantic extensions.

Parameters:

  • df (DataFrame) –

    The DataFrame to extend with semantic operations.

Methods:

  • join

    Performs a semantic join between two DataFrames using a natural language predicate.

  • sim_join

    Performs a semantic similarity join between two DataFrames using embedding expressions.

  • with_cluster_labels

    Cluster rows using K-means and add cluster metadata columns.

Source code in src/fenic/api/dataframe/semantic_extensions.py
30
31
32
33
34
35
36
def __init__(self, df: DataFrame):
    """Initialize semantic extensions.

    Args:
        df: The DataFrame to extend with semantic operations.
    """
    self._df = df

join

join(other: DataFrame, join_instruction: str, examples: Optional[JoinExampleCollection] = None, model_alias: Optional[str] = None) -> DataFrame

Performs a semantic join between two DataFrames using a natural language predicate.

That evaluates to either true or false for each potential row pair.

The join works by: 1. Evaluating the provided join_instruction as a boolean predicate for each possible pair of rows 2. Including ONLY the row pairs where the predicate evaluates to True in the result set 3. Excluding all row pairs where the predicate evaluates to False

The instruction must reference exactly two columns, one from each DataFrame, using the :left and :right suffixes to indicate column origin.

This is useful when row pairing decisions require complex reasoning based on a custom predicate rather than simple equality or similarity matching.

Parameters:

  • other (DataFrame) –

    The DataFrame to join with.

  • join_instruction (str) –

    A natural language description of how to match values.

    • Must include one placeholder from the left DataFrame (e.g. {resume_summary:left}) and one from the right (e.g. {job_description:right}).
    • This instruction is evaluated as a boolean predicate - pairs where it's True are included, pairs where it's False are excluded.
  • examples (Optional[JoinExampleCollection], default: None ) –

    Optional JoinExampleCollection containing labeled pairs (left, right, output) to guide the semantic join behavior.

  • model_alias (Optional[str], default: None ) –

    Optional alias for the language model to use for the mapping. If None, will use the language model configured as the default.

Returns:

  • DataFrame ( DataFrame ) –

    A new DataFrame containing only the row pairs where the join_instruction predicate evaluates to True.

Raises:

  • TypeError

    If other is not a DataFrame or join_instruction is not a string.

  • ValueError

    If the instruction format is invalid or references invalid columns.

Basic semantic join
# Match job listings with candidate resumes based on title/skills
# Only includes pairs where the predicate evaluates to True
df_jobs.semantic.join(df_resumes,
    join_instruction="Given a candidate's resume_summary: {resume_summary:left} and a job description: {job_description:right}, does the candidate have the appropriate skills for the job?"
)
Semantic join with examples
# Improve join quality with examples
examples = JoinExampleCollection()
examples.create_example(JoinExample(
    left="5 years experience building backend services in Python using asyncio, FastAPI, and PostgreSQL",
    right="Senior Software Engineer - Backend",
    output=True))  # This pair WILL be included in similar cases
examples.create_example(JoinExample(
    left="5 years experience with growth strategy, private equity due diligence, and M&A",
    right="Product Manager - Hardware",
    output=False))  # This pair will NOT be included in similar cases
df_jobs.semantic.join(df_resumes,
    join_instruction="Given a candidate's resume_summary: {resume_summary:left} and a job description: {job_description:right}, does the candidate have the appropriate skills for the job?",
    examples=examples)
Source code in src/fenic/api/dataframe/semantic_extensions.py
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
def join(
    self,
    other: DataFrame,
    join_instruction: str,
    examples: Optional[JoinExampleCollection] = None,
    model_alias: Optional[str] = None,
) -> DataFrame:
    """Performs a semantic join between two DataFrames using a natural language predicate.

    That evaluates to either true or false for each potential row pair.

    The join works by:
    1. Evaluating the provided join_instruction as a boolean predicate for each possible pair of rows
    2. Including ONLY the row pairs where the predicate evaluates to True in the result set
    3. Excluding all row pairs where the predicate evaluates to False

    The instruction must reference **exactly two columns**, one from each DataFrame,
    using the `:left` and `:right` suffixes to indicate column origin.

    This is useful when row pairing decisions require complex reasoning based on a custom predicate rather than simple equality or similarity matching.

    Args:
        other: The DataFrame to join with.
        join_instruction: A natural language description of how to match values.

            - Must include one placeholder from the left DataFrame (e.g. `{resume_summary:left}`)
            and one from the right (e.g. `{job_description:right}`).
            - This instruction is evaluated as a boolean predicate - pairs where it's `True` are included,
            pairs where it's `False` are excluded.
        examples: Optional JoinExampleCollection containing labeled pairs (`left`, `right`, `output`)
            to guide the semantic join behavior.
        model_alias: Optional alias for the language model to use for the mapping. If None, will use the language model configured as the default.

    Returns:
        DataFrame: A new DataFrame containing only the row pairs where the join_instruction
                  predicate evaluates to True.

    Raises:
        TypeError: If `other` is not a DataFrame or `join_instruction` is not a string.
        ValueError: If the instruction format is invalid or references invalid columns.

    Example: Basic semantic join
        ```python
        # Match job listings with candidate resumes based on title/skills
        # Only includes pairs where the predicate evaluates to True
        df_jobs.semantic.join(df_resumes,
            join_instruction="Given a candidate's resume_summary: {resume_summary:left} and a job description: {job_description:right}, does the candidate have the appropriate skills for the job?"
        )
        ```

    Example: Semantic join with examples
        ```python
        # Improve join quality with examples
        examples = JoinExampleCollection()
        examples.create_example(JoinExample(
            left="5 years experience building backend services in Python using asyncio, FastAPI, and PostgreSQL",
            right="Senior Software Engineer - Backend",
            output=True))  # This pair WILL be included in similar cases
        examples.create_example(JoinExample(
            left="5 years experience with growth strategy, private equity due diligence, and M&A",
            right="Product Manager - Hardware",
            output=False))  # This pair will NOT be included in similar cases
        df_jobs.semantic.join(df_resumes,
            join_instruction="Given a candidate's resume_summary: {resume_summary:left} and a job description: {job_description:right}, does the candidate have the appropriate skills for the job?",
            examples=examples)
        ```
    """
    from fenic.api.dataframe.dataframe import DataFrame

    if not isinstance(other, DataFrame):
        raise TypeError(f"other argument must be a DataFrame, got {type(other)}")

    if not isinstance(join_instruction, str):
        raise TypeError(
            f"join_instruction argument must be a string, got {type(join_instruction)}"
        )
    join_columns = utils.parse_instruction(join_instruction)
    if len(join_columns) != 2:
        raise ValueError(
            f"join_instruction must contain exactly two columns, got {len(join_columns)}"
        )
    left_on = None
    right_on = None
    for join_col in join_columns:
        if join_col.endswith(":left"):
            if left_on is not None:
                raise ValueError(
                    "join_instruction cannot contain multiple :left columns"
                )
            left_on = col(join_col.split(":")[0])
        elif join_col.endswith(":right"):
            if right_on is not None:
                raise ValueError(
                    "join_instruction cannot contain multiple :right columns"
                )
            right_on = col(join_col.split(":")[0])
        else:
            raise ValueError(
                f"Column '{join_col}' must end with either :left or :right"
            )

    if left_on is None or right_on is None:
        raise ValueError(
            "join_instruction must contain exactly one :left and one :right column"
        )

    return self._df._from_logical_plan(
        SemanticJoin(
            left=self._df._logical_plan,
            right=other._logical_plan,
            left_on=left_on._logical_expr,
            right_on=right_on._logical_expr,
            join_instruction=join_instruction,
            examples=examples,
            model_alias=model_alias,
        ),
    )

sim_join

sim_join(other: DataFrame, left_on: ColumnOrName, right_on: ColumnOrName, k: int = 1, similarity_metric: SemanticSimilarityMetric = 'cosine', similarity_score_column: Optional[str] = None) -> DataFrame

Performs a semantic similarity join between two DataFrames using embedding expressions.

For each row in the left DataFrame, returns the top k most semantically similar rows from the right DataFrame based on the specified similarity metric.

Parameters:

  • other (DataFrame) –

    The right-hand DataFrame to join with.

  • left_on (ColumnOrName) –

    Expression or column representing embeddings in the left DataFrame.

  • right_on (ColumnOrName) –

    Expression or column representing embeddings in the right DataFrame.

  • k (int, default: 1 ) –

    Number of most similar matches to return per row.

  • similarity_metric (SemanticSimilarityMetric, default: 'cosine' ) –

    Similarity metric to use: "l2", "cosine", or "dot".

  • similarity_score_column (Optional[str], default: None ) –

    If set, adds a column with this name containing similarity scores. If None, the scores are omitted.

Returns:

  • DataFrame

    A DataFrame containing one row for each of the top-k matches per row in the left DataFrame.

  • DataFrame

    The result includes all columns from both DataFrames, optionally augmented with a similarity score column

  • DataFrame

    if similarity_score_column is provided.

Raises:

  • ValidationError

    If k is not positive or if the columns are invalid.

  • ValidationError

    If similarity_metric is not one of "l2", "cosine", "dot"

Match queries to FAQ entries
# Match customer queries to FAQ entries
df_queries.semantic.sim_join(
    df_faqs,
    left_on=embeddings(col("query_text")),
    right_on=embeddings(col("faq_question")),
    k=1
)
Link headlines to articles
# Link news headlines to full articles
df_headlines.semantic.sim_join(
    df_articles,
    left_on=embeddings(col("headline")),
    right_on=embeddings(col("content")),
    k=3,
    return_similarity_scores=True
)
Find similar job postings
# Find similar job postings across two sources
df_linkedin.semantic.sim_join(
    df_indeed,
    left_on=embeddings(col("job_title")),
    right_on=embeddings(col("job_description")),
    k=2
)
Source code in src/fenic/api/dataframe/semantic_extensions.py
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
def sim_join(
    self,
    other: DataFrame,
    left_on: ColumnOrName,
    right_on: ColumnOrName,
    k: int = 1,
    similarity_metric: SemanticSimilarityMetric = "cosine",
    similarity_score_column: Optional[str] = None,
) -> DataFrame:
    """Performs a semantic similarity join between two DataFrames using embedding expressions.

    For each row in the left DataFrame, returns the top `k` most semantically similar rows
    from the right DataFrame based on the specified similarity metric.

    Args:
        other: The right-hand DataFrame to join with.
        left_on: Expression or column representing embeddings in the left DataFrame.
        right_on: Expression or column representing embeddings in the right DataFrame.
        k: Number of most similar matches to return per row.
        similarity_metric: Similarity metric to use: "l2", "cosine", or "dot".
        similarity_score_column: If set, adds a column with this name containing similarity scores.
            If None, the scores are omitted.

    Returns:
        A DataFrame containing one row for each of the top-k matches per row in the left DataFrame.
        The result includes all columns from both DataFrames, optionally augmented with a similarity score column
        if `similarity_score_column` is provided.

    Raises:
        ValidationError: If `k` is not positive or if the columns are invalid.
        ValidationError: If `similarity_metric` is not one of "l2", "cosine", "dot"

    Example: Match queries to FAQ entries
        ```python
        # Match customer queries to FAQ entries
        df_queries.semantic.sim_join(
            df_faqs,
            left_on=embeddings(col("query_text")),
            right_on=embeddings(col("faq_question")),
            k=1
        )
        ```

    Example: Link headlines to articles
        ```python
        # Link news headlines to full articles
        df_headlines.semantic.sim_join(
            df_articles,
            left_on=embeddings(col("headline")),
            right_on=embeddings(col("content")),
            k=3,
            return_similarity_scores=True
        )
        ```

    Example: Find similar job postings
        ```python
        # Find similar job postings across two sources
        df_linkedin.semantic.sim_join(
            df_indeed,
            left_on=embeddings(col("job_title")),
            right_on=embeddings(col("job_description")),
            k=2
        )
        ```
    """
    from fenic.api.dataframe.dataframe import DataFrame

    if not isinstance(right_on, ColumnOrName):
        raise ValidationError(
            f"The `right_on` argument must be a `Column` or a string representing a column name, "
            f"but got `{type(right_on).__name__}` instead."
        )
    if not isinstance(other, DataFrame):
        raise ValidationError(
                        f"The `other` argument to `sim_join()` must be a DataFrame`, but got `{type(other).__name__}`."
                    )
    if not (isinstance(k, int) and k > 0):
        raise ValidationError(
            f"The parameter `k` must be a positive integer, but received `{k}`."
        )
    args = get_args(SemanticSimilarityMetric)
    if similarity_metric not in args:
        raise ValidationError(
            f"The `similarity_metric` argument must be one of {args}, but got `{similarity_metric}`."
        )

    def _validate_column(column: ColumnOrName, name: str):
        if column is None:
            raise ValidationError(f"The `{name}` argument must not be None.")
        if not isinstance(column, ColumnOrName):
            raise ValidationError(
                f"The `{name}` argument must be a `Column` or a string representing a column name, "
                f"but got `{type(column).__name__}` instead."
            )

    _validate_column(left_on, "left_on")
    _validate_column(right_on, "right_on")

    return self._df._from_logical_plan(
        SemanticSimilarityJoin(
            self._df._logical_plan,
            other._logical_plan,
            Column._from_col_or_name(left_on)._logical_expr,
            Column._from_col_or_name(right_on)._logical_expr,
            k,
            similarity_metric,
            similarity_score_column,
        ),
    )

with_cluster_labels

with_cluster_labels(by: ColumnOrName, num_clusters: int, label_column: str = 'cluster_label', centroid_column: Optional[str] = None) -> DataFrame

Cluster rows using K-means and add cluster metadata columns.

This method clusters rows based on the given embedding column or expression using K-means. It adds a new column with cluster assignments, and optionally includes the centroid embedding for each assigned cluster.

Parameters:

  • by (ColumnOrName) –

    Column or expression producing embeddings to cluster (e.g., embed(col("text"))).

  • num_clusters (int) –

    Number of clusters to compute (must be > 0).

  • label_column (str, default: 'cluster_label' ) –

    Name of the output column for cluster IDs. Default is "cluster_label".

  • centroid_column (Optional[str], default: None ) –

    If provided, adds a column with this name containing the centroid embedding for each row's assigned cluster.

Returns:

  • DataFrame

    A DataFrame with all original columns plus:

  • DataFrame
    • <label_column>: integer cluster assignment (0 to num_clusters - 1)
  • DataFrame
    • <centroid_column>: cluster centroid embedding, if specified

Raises:

  • ValidationError

    If num_clusters is not a positive integer

  • ValidationError

    If label_column is not a non-empty string

  • ValidationError

    If centroid_column is not a non-empty string

  • TypeMismatchError

    If the column is not an EmbeddingType

Basic clustering
# Cluster customer feedback and add cluster metadata
clustered_df = df.semantic.with_cluster_labels("feedback_embeddings", 5)

# Then use regular operations to analyze clusters
clustered_df.group_by("cluster_label").agg(count("*"), avg("rating"))
Filter outliers using centroids
# Cluster and filter out rows far from their centroid
clustered_df = df.semantic.with_cluster_labels("embeddings", 3, centroid_column="cluster_centroid")
clean_df = clustered_df.filter(
    embedding.compute_similarity("embeddings", "cluster_centroid", metric="cosine") > 0.7
)
Source code in src/fenic/api/dataframe/semantic_extensions.py
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
def with_cluster_labels(self, by: ColumnOrName, num_clusters: int, label_column: str = "cluster_label", centroid_column: Optional[str] = None) -> DataFrame:
    """Cluster rows using K-means and add cluster metadata columns.

    This method clusters rows based on the given embedding column or expression using K-means.
    It adds a new column with cluster assignments, and optionally includes the centroid embedding
    for each assigned cluster.

    Args:
        by: Column or expression producing embeddings to cluster (e.g., `embed(col("text"))`).
        num_clusters: Number of clusters to compute (must be > 0).
        label_column: Name of the output column for cluster IDs. Default is "cluster_label".
        centroid_column: If provided, adds a column with this name containing the centroid embedding
                        for each row's assigned cluster.

    Returns:
        A DataFrame with all original columns plus:
        - `<label_column>`: integer cluster assignment (0 to num_clusters - 1)
        - `<centroid_column>`: cluster centroid embedding, if specified

    Raises:
        ValidationError: If num_clusters is not a positive integer
        ValidationError: If label_column is not a non-empty string
        ValidationError: If centroid_column is not a non-empty string
        TypeMismatchError: If the column is not an EmbeddingType

    Example: Basic clustering
        ```python
        # Cluster customer feedback and add cluster metadata
        clustered_df = df.semantic.with_cluster_labels("feedback_embeddings", 5)

        # Then use regular operations to analyze clusters
        clustered_df.group_by("cluster_label").agg(count("*"), avg("rating"))
        ```

    Example: Filter outliers using centroids
        ```python
        # Cluster and filter out rows far from their centroid
        clustered_df = df.semantic.with_cluster_labels("embeddings", 3, centroid_column="cluster_centroid")
        clean_df = clustered_df.filter(
            embedding.compute_similarity("embeddings", "cluster_centroid", metric="cosine") > 0.7
        )
        ```
    """
    # Validate num_clusters
    if not isinstance(num_clusters, int) or num_clusters <= 0:
        raise ValidationError("`num_clusters` must be a positive integer greater than 0.")

    # Validate clustering target
    if not isinstance(by, ColumnOrName):
        raise ValidationError(
            f"Invalid cluster by: expected a column name (str) or Column object, got {type(by).__name__}."
        )

    # Validate label_column
    if not isinstance(label_column, str) or not label_column:
        raise ValidationError("`label_column` must be a non-empty string.")

    # Validate centroid_column if provided
    if centroid_column is not None:
        if not isinstance(centroid_column, str) or not centroid_column:
            raise ValidationError("`centroid_column` must be a non-empty string if provided.")

    # Check that the expression isn't a literal
    by_expr = Column._from_col_or_name(by)._logical_expr
    if isinstance(by_expr, LiteralExpr):
        raise ValidationError(
            f"Invalid cluster by: Cannot cluster by a literal value: {by_expr}."
        )

    return self._df._from_logical_plan(
        SemanticCluster(
            self._df._logical_plan, by_expr, num_clusters, label_column, centroid_column
        )
    )