Skip to content

fenic

Fenic is an opinionated, PySpark-inspired DataFrame framework for building production AI and agentic applications.

Classes:

  • AnthropicModelConfig

    Configuration for Anthropic models.

  • ArrayType

    A type representing a homogeneous variable-length array (list) of elements.

  • Catalog

    Entry point for catalog operations.

  • ClassifyExample

    A single semantic example for classification operations.

  • ClassifyExampleCollection

    Collection of examples for semantic classification operations.

  • Column

    A column expression in a DataFrame.

  • ColumnField

    Represents a typed column in a DataFrame schema.

  • DataFrame

    A data collection organized into named columns.

  • DataFrameReader

    Interface used to load a DataFrame from external storage systems.

  • DataFrameWriter

    Interface used to write a DataFrame to external storage systems.

  • DataType

    Base class for all data types.

  • DocumentPathType

    Represents a string containing a a document's local (file system) or remote (URL) path.

  • EmbeddingType

    A type representing a fixed-length embedding vector.

  • ExtractSchema

    Represents a structured extraction schema.

  • ExtractSchemaField

    Represents a field within an structured extraction schema.

  • ExtractSchemaList

    Represents a list data type for structured extraction schema definitions.

  • GoogleGLAModelConfig

    Configuration for Google GenerativeLAnguage (GLA) models.

  • GoogleVertexModelConfig

    Configuration for Google Vertex models.

  • GroupedData

    Methods for aggregations on a grouped DataFrame.

  • JoinExample

    A single semantic example for semantic join operations.

  • JoinExampleCollection

    Collection of examples for semantic join operations.

  • LMMetrics

    Tracks language model usage metrics including token counts and costs.

  • Lineage

    Query interface for tracing data lineage through a query plan.

  • MapExample

    A single semantic example for semantic mapping operations.

  • MapExampleCollection

    Collection of examples for semantic mapping operations.

  • OpenAIModelConfig

    Configuration for OpenAI models.

  • OperatorMetrics

    Metrics for a single operator in the query execution plan.

  • PredicateExample

    A single semantic example for semantic predicate operations.

  • PredicateExampleCollection

    Collection of examples for semantic predicate operations.

  • QueryMetrics

    Comprehensive metrics for an executed query.

  • QueryResult

    Container for query execution results and associated metadata.

  • RMMetrics

    Tracks embedding model usage metrics including token counts and costs.

  • Schema

    Represents the schema of a DataFrame.

  • SemanticConfig

    Configuration for semantic language and embedding models.

  • SemanticExtensions

    A namespace for semantic dataframe operators.

  • Session

    The entry point to programming with the DataFrame API. Similar to PySpark's SparkSession.

  • SessionConfig

    Configuration for a user session.

  • StructField

    A field in a StructType. Fields are nullable.

  • StructType

    A type representing a struct (record) with named fields.

  • TranscriptType

    Represents a string containing a transcript in a specific format.

Functions:

  • array

    Creates a new array column from multiple input columns.

  • array_agg

    Alias for collect_list().

  • array_contains

    Checks if array column contains a specific value.

  • array_size

    Returns the number of elements in an array column.

  • asc

    Creates a Column expression representing an ascending sort order.

  • asc_nulls_first

    Creates a Column expression representing an ascending sort order with nulls first.

  • asc_nulls_last

    Creates a Column expression representing an ascending sort order with nulls last.

  • avg

    Aggregate function: returns the average (mean) of all values in the specified column.

  • coalesce

    Returns the first non-null value from the given columns for each row.

  • col

    Creates a Column expression referencing a column in the DataFrame.

  • collect_list

    Aggregate function: collects all values from the specified column into a list.

  • configure_logging

    Configure logging for the library and root logger in interactive environments.

  • count

    Aggregate function: returns the count of non-null values in the specified column.

  • desc

    Creates a Column expression representing a descending sort order.

  • desc_nulls_first

    Creates a Column expression representing a descending sort order with nulls first.

  • desc_nulls_last

    Creates a Column expression representing a descending sort order with nulls last.

  • first

    Aggregate function: returns the first non-null value in the specified column.

  • lit

    Creates a Column expression representing a literal value.

  • max

    Aggregate function: returns the maximum value in the specified column.

  • mean

    Aggregate function: returns the mean (average) of all values in the specified column.

  • min

    Aggregate function: returns the minimum value in the specified column.

  • stddev

    Aggregate function: returns the sample standard deviation of the specified column.

  • struct

    Creates a new struct column from multiple input columns.

  • sum

    Aggregate function: returns the sum of all values in the specified column.

  • udf

    A decorator or function for creating user-defined functions (UDFs) that can be applied to DataFrame rows.

  • when

    Evaluates a condition and returns a value if true.

Attributes:

  • BooleanType

    Represents a boolean value. (True/False)

  • DataLike

    Union type representing any supported data format for both input and output operations.

  • DataLikeType

    String literal type for specifying data output formats.

  • DoubleType

    Represents a 64-bit floating-point number.

  • FloatType

    Represents a 32-bit floating-point number.

  • HtmlType

    Represents a string containing raw HTML markup.

  • IntegerType

    Represents a signed integer value.

  • JsonType

    Represents a string containing JSON data.

  • MarkdownType

    Represents a string containing Markdown-formatted text.

  • SemanticSimilarityMetric

    Type alias representing supported semantic similarity metrics.

  • StringType

    Represents a UTF-8 encoded string value.

BooleanType module-attribute

BooleanType = _BooleanType()

Represents a boolean value. (True/False)

DataLike module-attribute

DataLike = Union[DataFrame, DataFrame, Dict[str, List[Any]], List[Dict[str, Any]], Table]

Union type representing any supported data format for both input and output operations.

This type encompasses all possible data structures that can be: 1. Used as input when creating DataFrames 2. Returned as output from query results

Supported formats
  • pl.DataFrame: Native Polars DataFrame with efficient columnar storage
  • pd.DataFrame: Pandas DataFrame, optionally with PyArrow extension arrays
  • Dict[str, List[Any]]: Column-oriented dictionary where:
    • Keys are column names (str)
    • Values are lists containing all values for that column
  • List[Dict[str, Any]]: Row-oriented list where:
    • Each element is a dictionary representing one row
    • Dictionary keys are column names, values are cell values
  • pa.Table: Apache Arrow Table with columnar memory layout
Usage
  • Input: Used in create_dataframe() to accept data in various formats
  • Output: Used in QueryResult.data to return results in requested format

The specific type returned depends on the DataLikeType format specified when collecting query results.

DataLikeType module-attribute

DataLikeType = Literal['polars', 'pandas', 'pydict', 'pylist', 'arrow']

String literal type for specifying data output formats.

Valid values
  • "polars": Native Polars DataFrame format
  • "pandas": Pandas DataFrame with PyArrow extension arrays
  • "pydict": Python dictionary with column names as keys, lists as values
  • "pylist": Python list of dictionaries, each representing one row
  • "arrow": Apache Arrow Table format

Used as input parameter for methods that can return data in multiple formats.

DoubleType module-attribute

DoubleType = _DoubleType()

Represents a 64-bit floating-point number.

FloatType module-attribute

FloatType = _FloatType()

Represents a 32-bit floating-point number.

HtmlType module-attribute

HtmlType = _HtmlType()

Represents a string containing raw HTML markup.

IntegerType module-attribute

IntegerType = _IntegerType()

Represents a signed integer value.

JsonType module-attribute

JsonType = _JsonType()

Represents a string containing JSON data.

MarkdownType module-attribute

MarkdownType = _MarkdownType()

Represents a string containing Markdown-formatted text.

SemanticSimilarityMetric module-attribute

SemanticSimilarityMetric = Literal['cosine', 'l2', 'dot']

Type alias representing supported semantic similarity metrics.

Valid values:

  • "cosine": Cosine similarity, measures the cosine of the angle between two vectors.
  • "l2": Euclidean (L2) distance, measures the straight-line distance between two vectors.
  • "dot": Dot product similarity, the raw inner product of two vectors.

These metrics are commonly used for comparing embedding vectors in semantic search and other similarity-based applications.

StringType module-attribute

StringType = _StringType()

Represents a UTF-8 encoded string value.

AnthropicModelConfig

Bases: BaseModel

Configuration for Anthropic models.

This class defines the configuration settings for Anthropic language models, including model selection and separate rate limiting parameters for input and output tokens.

Attributes:

  • model_name (ANTHROPIC_AVAILABLE_LANGUAGE_MODELS) –

    The name of the Anthropic model to use.

  • rpm (int) –

    Requests per minute limit; must be greater than 0.

  • input_tpm (int) –

    Input tokens per minute limit; must be greater than 0.

  • output_tpm (int) –

    Output tokens per minute limit; must be greater than 0.

Examples:

Configuring an Anthropic model with separate input/output rate limits:

config = AnthropicModelConfig(
    model_name="claude-3-5-haiku-latest",
    rpm=100,
    input_tpm=100,
    output_tpm=100
)

ArrayType

Bases: DataType

A type representing a homogeneous variable-length array (list) of elements.

Attributes:

  • element_type (DataType) –

    The data type of each element in the array.

Create an array of strings
ArrayType(StringType)
ArrayType(element_type=StringType)

Catalog

Catalog(catalog: BaseCatalog)

Entry point for catalog operations.

The Catalog provides methods to interact with and manage database tables, including listing available tables, describing table schemas, and dropping tables.

Basic usage
# Create a new catalog
session.catalog.create_catalog('my_catalog')
# Returns: True

# Set the current catalog
session.catalog.set_current_catalog('my_catalog')
# Returns: None

# Create a new database
session.catalog.create_database('my_database')
# Returns: True

# Use the new database
session.catalog.set_current_database('my_database')
# Returns: None

# Create a new table
session.catalog.create_table('my_table', Schema([
    ColumnField('id', IntegerType),
]))
# Returns: True

Initialize a Catalog instance.

Parameters:

  • catalog (BaseCatalog) –

    The underlying catalog implementation.

Methods:

Source code in src/fenic/api/catalog.py
43
44
45
46
47
48
49
def __init__(self, catalog: BaseCatalog):
    """Initialize a Catalog instance.

    Args:
        catalog: The underlying catalog implementation.
    """
    self.catalog = catalog

create_catalog

create_catalog(catalog_name: str, ignore_if_exists: bool = True) -> bool

Creates a new catalog.

Parameters:

  • catalog_name (str) –

    Name of the catalog to create.

  • ignore_if_exists (bool, default: True ) –

    If True, return False when the catalog already exists. If False, raise an error when the catalog already exists. Defaults to True.

Raises:

  • CatalogAlreadyExistsError

    If the catalog already exists and ignore_if_exists is False.

Returns:

  • bool ( bool ) –

    True if the catalog was created successfully, False if the catalog

  • bool

    already exists and ignore_if_exists is True.

Create a new catalog
# Create a new catalog named 'my_catalog'
session.catalog.create_catalog('my_catalog')
# Returns: True
Create an existing catalog with ignore_if_exists
# Try to create an existing catalog with ignore_if_exists=True
session.catalog.create_catalog('my_catalog', ignore_if_exists=True)
# Returns: False
Create an existing catalog without ignore_if_exists
# Try to create an existing catalog with ignore_if_exists=False
session.catalog.create_catalog('my_catalog', ignore_if_exists=False)
# Raises: CatalogAlreadyExistsError
Source code in src/fenic/api/catalog.py
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
@validate_call(config=ConfigDict(strict=True))
def create_catalog(self, catalog_name: str, ignore_if_exists: bool = True) -> bool:
    """Creates a new catalog.

    Args:
        catalog_name (str): Name of the catalog to create.
        ignore_if_exists (bool): If True, return False when the catalog already exists.
            If False, raise an error when the catalog already exists.
            Defaults to True.

    Raises:
        CatalogAlreadyExistsError: If the catalog already exists and ignore_if_exists is False.

    Returns:
        bool: True if the catalog was created successfully, False if the catalog
        already exists and ignore_if_exists is True.

    Example: Create a new catalog
        ```python
        # Create a new catalog named 'my_catalog'
        session.catalog.create_catalog('my_catalog')
        # Returns: True
        ```

    Example: Create an existing catalog with ignore_if_exists
        ```python
        # Try to create an existing catalog with ignore_if_exists=True
        session.catalog.create_catalog('my_catalog', ignore_if_exists=True)
        # Returns: False
        ```

    Example: Create an existing catalog without ignore_if_exists
        ```python
        # Try to create an existing catalog with ignore_if_exists=False
        session.catalog.create_catalog('my_catalog', ignore_if_exists=False)
        # Raises: CatalogAlreadyExistsError
        ```
    """
    return self.catalog.create_catalog(catalog_name, ignore_if_exists)

create_database

create_database(database_name: str, ignore_if_exists: bool = True) -> bool

Creates a new database.

Parameters:

  • database_name (str) –

    Fully qualified or relative database name to create.

  • ignore_if_exists (bool, default: True ) –

    If True, return False when the database already exists. If False, raise an error when the database already exists. Defaults to True.

Raises:

  • DatabaseAlreadyExistsError

    If the database already exists and ignore_if_exists is False.

Returns:

  • bool ( bool ) –

    True if the database was created successfully, False if the database

  • bool

    already exists and ignore_if_exists is True.

Create a new database
# Create a new database named 'my_database'
session.catalog.create_database('my_database')
# Returns: True
Create an existing database with ignore_if_exists
# Try to create an existing database with ignore_if_exists=True
session.catalog.create_database('my_database', ignore_if_exists=True)
# Returns: False
Create an existing database without ignore_if_exists
# Try to create an existing database with ignore_if_exists=False
session.catalog.create_database('my_database', ignore_if_exists=False)
# Raises: DatabaseAlreadyExistsError
Source code in src/fenic/api/catalog.py
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
@validate_call(config=ConfigDict(strict=True))
def create_database(
    self, database_name: str, ignore_if_exists: bool = True
) -> bool:
    """Creates a new database.

    Args:
        database_name (str): Fully qualified or relative database name to create.
        ignore_if_exists (bool): If True, return False when the database already exists.
            If False, raise an error when the database already exists.
            Defaults to True.

    Raises:
        DatabaseAlreadyExistsError: If the database already exists and ignore_if_exists is False.

    Returns:
        bool: True if the database was created successfully, False if the database
        already exists and ignore_if_exists is True.

    Example: Create a new database
        ```python
        # Create a new database named 'my_database'
        session.catalog.create_database('my_database')
        # Returns: True
        ```

    Example: Create an existing database with ignore_if_exists
        ```python
        # Try to create an existing database with ignore_if_exists=True
        session.catalog.create_database('my_database', ignore_if_exists=True)
        # Returns: False
        ```

    Example: Create an existing database without ignore_if_exists
        ```python
        # Try to create an existing database with ignore_if_exists=False
        session.catalog.create_database('my_database', ignore_if_exists=False)
        # Raises: DatabaseAlreadyExistsError
        ```
    """
    return self.catalog.create_database(database_name, ignore_if_exists)

create_table

create_table(table_name: str, schema: Schema, ignore_if_exists: bool = True) -> bool

Creates a new table.

Parameters:

  • table_name (str) –

    Fully qualified or relative table name to create.

  • schema (Schema) –

    Schema of the table to create.

  • ignore_if_exists (bool, default: True ) –

    If True, return False when the table already exists. If False, raise an error when the table already exists. Defaults to True.

Returns:

  • bool ( bool ) –

    True if the table was created successfully, False if the table

  • bool

    already exists and ignore_if_exists is True.

Raises:

  • TableAlreadyExistsError

    If the table already exists and ignore_if_exists is False

Create a new table
# Create a new table with an integer column
session.catalog.create_table('my_table', Schema([
    ColumnField('id', IntegerType),
]))
# Returns: True
Create an existing table with ignore_if_exists
# Try to create an existing table with ignore_if_exists=True
session.catalog.create_table('my_table', Schema([
    ColumnField('id', IntegerType),
]), ignore_if_exists=True)
# Returns: False
Create an existing table without ignore_if_exists
# Try to create an existing table with ignore_if_exists=False
session.catalog.create_table('my_table', Schema([
    ColumnField('id', IntegerType),
]), ignore_if_exists=False)
# Raises: TableAlreadyExistsError
Source code in src/fenic/api/catalog.py
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
@validate_call(config=ConfigDict(strict=True))
def create_table(
    self, table_name: str, schema: Schema, ignore_if_exists: bool = True
) -> bool:
    """Creates a new table.

    Args:
        table_name (str): Fully qualified or relative table name to create.
        schema (Schema): Schema of the table to create.
        ignore_if_exists (bool): If True, return False when the table already exists.
            If False, raise an error when the table already exists.
            Defaults to True.

    Returns:
        bool: True if the table was created successfully, False if the table
        already exists and ignore_if_exists is True.

    Raises:
        TableAlreadyExistsError: If the table already exists and ignore_if_exists is False

    Example: Create a new table
        ```python
        # Create a new table with an integer column
        session.catalog.create_table('my_table', Schema([
            ColumnField('id', IntegerType),
        ]))
        # Returns: True
        ```

    Example: Create an existing table with ignore_if_exists
        ```python
        # Try to create an existing table with ignore_if_exists=True
        session.catalog.create_table('my_table', Schema([
            ColumnField('id', IntegerType),
        ]), ignore_if_exists=True)
        # Returns: False
        ```

    Example: Create an existing table without ignore_if_exists
        ```python
        # Try to create an existing table with ignore_if_exists=False
        session.catalog.create_table('my_table', Schema([
            ColumnField('id', IntegerType),
        ]), ignore_if_exists=False)
        # Raises: TableAlreadyExistsError
        ```
    """
    return self.catalog.create_table(table_name, schema, ignore_if_exists)

describe_table

describe_table(table_name: str) -> Schema

Returns the schema of the specified table.

Parameters:

  • table_name (str) –

    Fully qualified or relative table name to describe.

Returns:

  • Schema ( Schema ) –

    A schema object describing the table's structure with field names and types.

Raises:

  • TableNotFoundError

    If the table doesn't exist.

Describe a table's schema
# For a table created with: CREATE TABLE t1 (id int)
session.catalog.describe_table('t1')
# Returns: Schema([
#     ColumnField('id', IntegerType),
# ])
Source code in src/fenic/api/catalog.py
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
@validate_call(config=ConfigDict(strict=True))
def describe_table(self, table_name: str) -> Schema:
    """Returns the schema of the specified table.

    Args:
        table_name (str): Fully qualified or relative table name to describe.

    Returns:
        Schema: A schema object describing the table's structure with field names and types.

    Raises:
        TableNotFoundError: If the table doesn't exist.

    Example: Describe a table's schema
        ```python
        # For a table created with: CREATE TABLE t1 (id int)
        session.catalog.describe_table('t1')
        # Returns: Schema([
        #     ColumnField('id', IntegerType),
        # ])
        ```
    """
    return self.catalog.describe_table(table_name)

does_catalog_exist

does_catalog_exist(catalog_name: str) -> bool

Checks if a catalog with the specified name exists.

Parameters:

  • catalog_name (str) –

    Name of the catalog to check.

Returns:

  • bool ( bool ) –

    True if the catalog exists, False otherwise.

Check if a catalog exists
# Check if 'my_catalog' exists
session.catalog.does_catalog_exist('my_catalog')
# Returns: True
Source code in src/fenic/api/catalog.py
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
@validate_call(config=ConfigDict(strict=True))
def does_catalog_exist(self, catalog_name: str) -> bool:
    """Checks if a catalog with the specified name exists.

    Args:
        catalog_name (str): Name of the catalog to check.

    Returns:
        bool: True if the catalog exists, False otherwise.

    Example: Check if a catalog exists
        ```python
        # Check if 'my_catalog' exists
        session.catalog.does_catalog_exist('my_catalog')
        # Returns: True
        ```
    """
    return self.catalog.does_catalog_exist(catalog_name)

does_database_exist

does_database_exist(database_name: str) -> bool

Checks if a database with the specified name exists.

Parameters:

  • database_name (str) –

    Fully qualified or relative database name to check.

Returns:

  • bool ( bool ) –

    True if the database exists, False otherwise.

Check if a database exists
# Check if 'my_database' exists
session.catalog.does_database_exist('my_database')
# Returns: True
Source code in src/fenic/api/catalog.py
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
@validate_call(config=ConfigDict(strict=True))
def does_database_exist(self, database_name: str) -> bool:
    """Checks if a database with the specified name exists.

    Args:
        database_name (str): Fully qualified or relative database name to check.

    Returns:
        bool: True if the database exists, False otherwise.

    Example: Check if a database exists
        ```python
        # Check if 'my_database' exists
        session.catalog.does_database_exist('my_database')
        # Returns: True
        ```
    """
    return self.catalog.does_database_exist(database_name)

does_table_exist

does_table_exist(table_name: str) -> bool

Checks if a table with the specified name exists.

Parameters:

  • table_name (str) –

    Fully qualified or relative table name to check.

Returns:

  • bool ( bool ) –

    True if the table exists, False otherwise.

Check if a table exists
# Check if 'my_table' exists
session.catalog.does_table_exist('my_table')
# Returns: True
Source code in src/fenic/api/catalog.py
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
@validate_call(config=ConfigDict(strict=True))
def does_table_exist(self, table_name: str) -> bool:
    """Checks if a table with the specified name exists.

    Args:
        table_name (str): Fully qualified or relative table name to check.

    Returns:
        bool: True if the table exists, False otherwise.

    Example: Check if a table exists
        ```python
        # Check if 'my_table' exists
        session.catalog.does_table_exist('my_table')
        # Returns: True
        ```
    """
    return self.catalog.does_table_exist(table_name)

drop_catalog

drop_catalog(catalog_name: str, ignore_if_not_exists: bool = True) -> bool

Drops a catalog.

Parameters:

  • catalog_name (str) –

    Name of the catalog to drop.

  • ignore_if_not_exists (bool, default: True ) –

    If True, silently return if the catalog doesn't exist. If False, raise an error if the catalog doesn't exist. Defaults to True.

Raises:

  • CatalogNotFoundError

    If the catalog does not exist and ignore_if_not_exists is False

Returns:

  • bool ( bool ) –

    True if the catalog was dropped successfully, False if the catalog

  • bool

    didn't exist and ignore_if_not_exists is True.

Drop a non-existent catalog
# Try to drop a non-existent catalog
session.catalog.drop_catalog('my_catalog')
# Returns: False
Drop a non-existent catalog without ignore_if_not_exists
# Try to drop a non-existent catalog with ignore_if_not_exists=False
session.catalog.drop_catalog('my_catalog', ignore_if_not_exists=False)
# Raises: CatalogNotFoundError
Source code in src/fenic/api/catalog.py
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
@validate_call(config=ConfigDict(strict=True))
def drop_catalog(
    self, catalog_name: str, ignore_if_not_exists: bool = True
) -> bool:
    """Drops a catalog.

    Args:
        catalog_name (str): Name of the catalog to drop.
        ignore_if_not_exists (bool): If True, silently return if the catalog doesn't exist.
            If False, raise an error if the catalog doesn't exist.
            Defaults to True.

    Raises:
        CatalogNotFoundError: If the catalog does not exist and ignore_if_not_exists is False

    Returns:
        bool: True if the catalog was dropped successfully, False if the catalog
        didn't exist and ignore_if_not_exists is True.

    Example: Drop a non-existent catalog
        ```python
        # Try to drop a non-existent catalog
        session.catalog.drop_catalog('my_catalog')
        # Returns: False
        ```

    Example: Drop a non-existent catalog without ignore_if_not_exists
        ```python
        # Try to drop a non-existent catalog with ignore_if_not_exists=False
        session.catalog.drop_catalog('my_catalog', ignore_if_not_exists=False)
        # Raises: CatalogNotFoundError
        ```
    """
    return self.catalog.drop_catalog(catalog_name, ignore_if_not_exists)

drop_database

drop_database(database_name: str, cascade: bool = False, ignore_if_not_exists: bool = True) -> bool

Drops a database.

Parameters:

  • database_name (str) –

    Fully qualified or relative database name to drop.

  • cascade (bool, default: False ) –

    If True, drop all tables in the database. Defaults to False.

  • ignore_if_not_exists (bool, default: True ) –

    If True, silently return if the database doesn't exist. If False, raise an error if the database doesn't exist. Defaults to True.

Raises:

  • DatabaseNotFoundError

    If the database does not exist and ignore_if_not_exists is False

  • CatalogError

    If the current database is being dropped, if the database is not empty and cascade is False

Returns:

  • bool ( bool ) –

    True if the database was dropped successfully, False if the database

  • bool

    didn't exist and ignore_if_not_exists is True.

Drop a non-existent database
# Try to drop a non-existent database
session.catalog.drop_database('my_database')
# Returns: False
Drop a non-existent database without ignore_if_not_exists
# Try to drop a non-existent database with ignore_if_not_exists=False
session.catalog.drop_database('my_database', ignore_if_not_exists=False)
# Raises: DatabaseNotFoundError
Source code in src/fenic/api/catalog.py
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
@validate_call(config=ConfigDict(strict=True))
def drop_database(
    self,
    database_name: str,
    cascade: bool = False,
    ignore_if_not_exists: bool = True,
) -> bool:
    """Drops a database.

    Args:
        database_name (str): Fully qualified or relative database name to drop.
        cascade (bool): If True, drop all tables in the database.
            Defaults to False.
        ignore_if_not_exists (bool): If True, silently return if the database doesn't exist.
            If False, raise an error if the database doesn't exist.
            Defaults to True.

    Raises:
        DatabaseNotFoundError: If the database does not exist and ignore_if_not_exists is False
        CatalogError: If the current database is being dropped, if the database is not empty and cascade is False

    Returns:
        bool: True if the database was dropped successfully, False if the database
        didn't exist and ignore_if_not_exists is True.

    Example: Drop a non-existent database
        ```python
        # Try to drop a non-existent database
        session.catalog.drop_database('my_database')
        # Returns: False
        ```

    Example: Drop a non-existent database without ignore_if_not_exists
        ```python
        # Try to drop a non-existent database with ignore_if_not_exists=False
        session.catalog.drop_database('my_database', ignore_if_not_exists=False)
        # Raises: DatabaseNotFoundError
        ```
    """
    return self.catalog.drop_database(database_name, cascade, ignore_if_not_exists)

drop_table

drop_table(table_name: str, ignore_if_not_exists: bool = True) -> bool

Drops the specified table.

By default this method will return False if the table doesn't exist.

Parameters:

  • table_name (str) –

    Fully qualified or relative table name to drop.

  • ignore_if_not_exists (bool, default: True ) –

    If True, return False when the table doesn't exist. If False, raise an error when the table doesn't exist. Defaults to True.

Returns:

  • bool ( bool ) –

    True if the table was dropped successfully, False if the table

  • bool

    didn't exist and ignore_if_not_exist is True.

Raises:

  • TableNotFoundError

    If the table doesn't exist and ignore_if_not_exists is False

Drop an existing table
# Drop an existing table 't1'
session.catalog.drop_table('t1')
# Returns: True
Drop a non-existent table with ignore_if_not_exists
# Try to drop a non-existent table with ignore_if_not_exists=True
session.catalog.drop_table('t2', ignore_if_not_exists=True)
# Returns: False
Drop a non-existent table without ignore_if_not_exists
# Try to drop a non-existent table with ignore_if_not_exists=False
session.catalog.drop_table('t2', ignore_if_not_exists=False)
# Raises: TableNotFoundError
Source code in src/fenic/api/catalog.py
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
@validate_call(config=ConfigDict(strict=True))
def drop_table(self, table_name: str, ignore_if_not_exists: bool = True) -> bool:
    """Drops the specified table.

    By default this method will return False if the table doesn't exist.

    Args:
        table_name (str): Fully qualified or relative table name to drop.
        ignore_if_not_exists (bool): If True, return False when the table doesn't exist.
            If False, raise an error when the table doesn't exist.
            Defaults to True.

    Returns:
        bool: True if the table was dropped successfully, False if the table
        didn't exist and ignore_if_not_exist is True.

    Raises:
        TableNotFoundError: If the table doesn't exist and ignore_if_not_exists is False

    Example: Drop an existing table
        ```python
        # Drop an existing table 't1'
        session.catalog.drop_table('t1')
        # Returns: True
        ```

    Example: Drop a non-existent table with ignore_if_not_exists
        ```python
        # Try to drop a non-existent table with ignore_if_not_exists=True
        session.catalog.drop_table('t2', ignore_if_not_exists=True)
        # Returns: False
        ```

    Example: Drop a non-existent table without ignore_if_not_exists
        ```python
        # Try to drop a non-existent table with ignore_if_not_exists=False
        session.catalog.drop_table('t2', ignore_if_not_exists=False)
        # Raises: TableNotFoundError
        ```
    """
    return self.catalog.drop_table(table_name, ignore_if_not_exists)

get_current_catalog

get_current_catalog() -> str

Returns the name of the current catalog.

Returns:

  • str ( str ) –

    The name of the current catalog.

Get current catalog name
# Get the name of the current catalog
session.catalog.get_current_catalog()
# Returns: 'default'
Source code in src/fenic/api/catalog.py
71
72
73
74
75
76
77
78
79
80
81
82
83
84
def get_current_catalog(self) -> str:
    """Returns the name of the current catalog.

    Returns:
        str: The name of the current catalog.

    Example: Get current catalog name
        ```python
        # Get the name of the current catalog
        session.catalog.get_current_catalog()
        # Returns: 'default'
        ```
    """
    return self.catalog.get_current_catalog()

get_current_database

get_current_database() -> str

Returns the name of the current database in the current catalog.

Returns:

  • str ( str ) –

    The name of the current database.

Get current database name
# Get the name of the current database
session.catalog.get_current_database()
# Returns: 'default'
Source code in src/fenic/api/catalog.py
214
215
216
217
218
219
220
221
222
223
224
225
226
227
def get_current_database(self) -> str:
    """Returns the name of the current database in the current catalog.

    Returns:
        str: The name of the current database.

    Example: Get current database name
        ```python
        # Get the name of the current database
        session.catalog.get_current_database()
        # Returns: 'default'
        ```
    """
    return self.catalog.get_current_database()

list_catalogs

list_catalogs() -> List[str]

Returns a list of available catalogs.

Returns:

  • List[str]

    List[str]: A list of catalog names available in the system.

  • List[str]

    Returns an empty list if no catalogs are found.

List all catalogs
# Get all available catalogs
session.catalog.list_catalogs()
# Returns: ['default', 'my_catalog', 'other_catalog']
Source code in src/fenic/api/catalog.py
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
def list_catalogs(self) -> List[str]:
    """Returns a list of available catalogs.

    Returns:
        List[str]: A list of catalog names available in the system.
        Returns an empty list if no catalogs are found.

    Example: List all catalogs
        ```python
        # Get all available catalogs
        session.catalog.list_catalogs()
        # Returns: ['default', 'my_catalog', 'other_catalog']
        ```
    """
    return self.catalog.list_catalogs()

list_databases

list_databases() -> List[str]

Returns a list of databases in the current catalog.

Returns:

  • List[str]

    List[str]: A list of database names in the current catalog.

  • List[str]

    Returns an empty list if no databases are found.

List all databases
# Get all databases in the current catalog
session.catalog.list_databases()
# Returns: ['default', 'my_database', 'other_database']
Source code in src/fenic/api/catalog.py
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
def list_databases(self) -> List[str]:
    """Returns a list of databases in the current catalog.

    Returns:
        List[str]: A list of database names in the current catalog.
        Returns an empty list if no databases are found.

    Example: List all databases
        ```python
        # Get all databases in the current catalog
        session.catalog.list_databases()
        # Returns: ['default', 'my_database', 'other_database']
        ```
    """
    return self.catalog.list_databases()

list_tables

list_tables() -> List[str]

Returns a list of tables stored in the current database.

This method queries the current database to retrieve all available table names.

Returns:

  • List[str]

    List[str]: A list of table names stored in the database.

  • List[str]

    Returns an empty list if no tables are found.

List all tables
# Get all tables in the current database
session.catalog.list_tables()
# Returns: ['table1', 'table2', 'table3']
Source code in src/fenic/api/catalog.py
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
def list_tables(self) -> List[str]:
    """Returns a list of tables stored in the current database.

    This method queries the current database to retrieve all available table names.

    Returns:
        List[str]: A list of table names stored in the database.
        Returns an empty list if no tables are found.

    Example: List all tables
        ```python
        # Get all tables in the current database
        session.catalog.list_tables()
        # Returns: ['table1', 'table2', 'table3']
        ```
    """
    return self.catalog.list_tables()

set_current_catalog

set_current_catalog(catalog_name: str) -> None

Sets the current catalog.

Parameters:

  • catalog_name (str) –

    Name of the catalog to set as current.

Raises:

  • ValueError

    If the specified catalog doesn't exist.

Set current catalog
# Set 'my_catalog' as the current catalog
session.catalog.set_current_catalog('my_catalog')
Source code in src/fenic/api/catalog.py
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
@validate_call(config=ConfigDict(strict=True))
def set_current_catalog(self, catalog_name: str) -> None:
    """Sets the current catalog.

    Args:
        catalog_name (str): Name of the catalog to set as current.

    Raises:
        ValueError: If the specified catalog doesn't exist.

    Example: Set current catalog
        ```python
        # Set 'my_catalog' as the current catalog
        session.catalog.set_current_catalog('my_catalog')
        ```
    """
    self.catalog.set_current_catalog(catalog_name)

set_current_database

set_current_database(database_name: str) -> None

Sets the current database.

Parameters:

  • database_name (str) –

    Fully qualified or relative database name to set as current.

Raises:

  • DatabaseNotFoundError

    If the specified database doesn't exist.

Set current database
# Set 'my_database' as the current database
session.catalog.set_current_database('my_database')
Source code in src/fenic/api/catalog.py
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
@validate_call(config=ConfigDict(strict=True))
def set_current_database(self, database_name: str) -> None:
    """Sets the current database.

    Args:
        database_name (str): Fully qualified or relative database name to set as current.

    Raises:
        DatabaseNotFoundError: If the specified database doesn't exist.

    Example: Set current database
        ```python
        # Set 'my_database' as the current database
        session.catalog.set_current_database('my_database')
        ```
    """
    self.catalog.set_current_database(database_name)

ClassifyExample

Bases: BaseModel

A single semantic example for classification operations.

Classify examples demonstrate the classification of an input string into a specific category string, used in a semantic.classify operation.

ClassifyExampleCollection

ClassifyExampleCollection(examples: List[ExampleType] = None)

Bases: BaseExampleCollection[ClassifyExample]

Collection of examples for semantic classification operations.

Classification operations categorize input text into predefined classes. This collection manages examples that demonstrate the expected classification results for different inputs.

Examples in this collection have a single input string and an output string representing the classification result.

Methods:

  • from_polars

    Create collection from a Polars DataFrame. Must have an 'output' column and an 'input' column.

Source code in src/fenic/core/types/semantic_examples.py
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
def __init__(self, examples: List[ExampleType] = None):
    """Initialize a collection of semantic examples.

    Args:
        examples: Optional list of examples to add to the collection. Each example
            will be processed through create_example() to ensure proper formatting
            and validation.

    Note:
        The examples list is initialized as empty if no examples are provided.
        Each example in the provided list will be processed through create_example()
        to ensure proper formatting and validation.
    """
    self.examples: List[ExampleType] = []
    if examples:
        for example in examples:
            self.create_example(example)

from_polars classmethod

from_polars(df: DataFrame) -> ClassifyExampleCollection

Create collection from a Polars DataFrame. Must have an 'output' column and an 'input' column.

Source code in src/fenic/core/types/semantic_examples.py
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
@classmethod
def from_polars(cls, df: pl.DataFrame) -> ClassifyExampleCollection:
    """Create collection from a Polars DataFrame. Must have an 'output' column and an 'input' column."""
    collection = cls()

    if EXAMPLE_INPUT_KEY not in df.columns:
        raise InvalidExampleCollectionError(
            f"Classify Examples DataFrame missing required '{EXAMPLE_INPUT_KEY}' column"
        )
    if EXAMPLE_OUTPUT_KEY not in df.columns:
        raise InvalidExampleCollectionError(
            f"Classify Examples DataFrame missing required '{EXAMPLE_OUTPUT_KEY}' column"
        )

    for row in df.iter_rows(named=True):
        if row[EXAMPLE_INPUT_KEY] is None:
            raise InvalidExampleCollectionError(
                f"Classify Examples DataFrame contains null values in '{EXAMPLE_INPUT_KEY}' column"
            )
        if row[EXAMPLE_OUTPUT_KEY] is None:
            raise InvalidExampleCollectionError(
                f"Classify Examples DataFrame contains null values in '{EXAMPLE_OUTPUT_KEY}' column"
            )

        example = ClassifyExample(
            input=row[EXAMPLE_INPUT_KEY],
            output=row[EXAMPLE_OUTPUT_KEY],
        )
        collection.create_example(example)

    return collection

Column

A column expression in a DataFrame.

This class represents a column expression that can be used in DataFrame operations. It provides methods for accessing, transforming, and combining column data.

Create a column reference
# Reference a column by name using col() function
col("column_name")
Use column in operations
# Perform arithmetic operations
df.select(col("price") * col("quantity"))
Chain column operations
# Chain multiple operations
df.select(col("name").upper().contains("John"))

Methods:

  • alias

    Create an alias for this column.

  • asc

    Apply ascending order to this column during a dataframe sort or order_by.

  • asc_nulls_first

    Apply ascending order putting nulls first to this column during a dataframe sort or order_by.

  • asc_nulls_last

    Apply ascending order putting nulls last to this column during a dataframe sort or order_by.

  • cast

    Cast the column to a new data type.

  • contains

    Check if the column contains a substring.

  • contains_any

    Check if the column contains any of the specified substrings.

  • desc

    Apply descending order to this column during a dataframe sort or order_by.

  • desc_nulls_first

    Apply descending order putting nulls first to this column during a dataframe sort or order_by.

  • desc_nulls_last

    Apply descending order putting nulls last to this column during a dataframe sort or order_by.

  • ends_with

    Check if the column ends with a substring.

  • get_item

    Access an item in a struct or array column.

  • ilike

    Check if the column matches a SQL LIKE pattern (case-insensitive).

  • is_in

    Check if the column is in a list of values or a column expression.

  • is_not_null

    Check if the column contains non-NULL values.

  • is_null

    Check if the column contains NULL values.

  • like

    Check if the column matches a SQL LIKE pattern.

  • otherwise

    Evaluates a list of conditions and returns one of multiple possible result expressions.

  • rlike

    Check if the column matches a regular expression pattern.

  • starts_with

    Check if the column starts with a substring.

  • when

    Evaluates a list of conditions and returns one of multiple possible result expressions.

alias

alias(name: str) -> Column

Create an alias for this column.

This method assigns a new name to the column expression, which is useful for renaming columns or providing names for complex expressions.

Parameters:

  • name (str) –

    The alias name to assign

Returns:

  • Column ( Column ) –

    Column with the specified alias

Rename a column
# Rename a column to a new name
df.select(col("original_name").alias("new_name"))
Name a complex expression
# Give a name to a calculated column
df.select((col("price") * col("quantity")).alias("total_value"))
Source code in src/fenic/api/column.py
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
def alias(self, name: str) -> Column:
    """Create an alias for this column.

    This method assigns a new name to the column expression, which is useful
    for renaming columns or providing names for complex expressions.

    Args:
        name (str): The alias name to assign

    Returns:
        Column: Column with the specified alias

    Example: Rename a column
        ```python
        # Rename a column to a new name
        df.select(col("original_name").alias("new_name"))
        ```

    Example: Name a complex expression
        ```python
        # Give a name to a calculated column
        df.select((col("price") * col("quantity")).alias("total_value"))
        ```
    """
    return Column._from_logical_expr(AliasExpr(self._logical_expr, name))

asc

asc() -> Column

Apply ascending order to this column during a dataframe sort or order_by.

This method creates an expression that provides a column and sort order to the sort function.

Returns:

  • Column ( Column ) –

    A Column expression that provides a column and sort order to the sort function

Sort by age in ascending order
# Sort a dataframe by age in ascending order
df.sort(col("age").asc()).show()
Sort using column reference
# Sort using column reference with ascending order
df.sort(col("age").asc()).show()
Source code in src/fenic/api/column.py
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
def asc(self) -> Column:
    """Apply ascending order to this column during a dataframe sort or order_by.

    This method creates an expression that provides a column and sort order to the sort function.

    Returns:
        Column: A Column expression that provides a column and sort order to the sort function

    Example: Sort by age in ascending order
        ```python
        # Sort a dataframe by age in ascending order
        df.sort(col("age").asc()).show()
        ```

    Example: Sort using column reference
        ```python
        # Sort using column reference with ascending order
        df.sort(col("age").asc()).show()
        ```
    """
    return Column._from_logical_expr(SortExpr(self._logical_expr, ascending=True))

asc_nulls_first

asc_nulls_first() -> Column

Apply ascending order putting nulls first to this column during a dataframe sort or order_by.

This method creates an expression that provides a column and sort order to the sort function.

Returns:

  • Column ( Column ) –

    A Column expression that provides a column and sort order to the sort function

Sort by age in ascending order with nulls first
# Sort a dataframe by age in ascending order, with nulls appearing first
df.sort(col("age").asc_nulls_first()).show()
Sort using column reference
# Sort using column reference with ascending order and nulls first
df.sort(col("age").asc_nulls_first()).show()
Source code in src/fenic/api/column.py
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
def asc_nulls_first(self) -> Column:
    """Apply ascending order putting nulls first to this column during a dataframe sort or order_by.

    This method creates an expression that provides a column and sort order to the sort function.

    Returns:
        Column: A Column expression that provides a column and sort order to the sort function

    Example: Sort by age in ascending order with nulls first
        ```python
        # Sort a dataframe by age in ascending order, with nulls appearing first
        df.sort(col("age").asc_nulls_first()).show()
        ```

    Example: Sort using column reference
        ```python
        # Sort using column reference with ascending order and nulls first
        df.sort(col("age").asc_nulls_first()).show()
        ```
    """
    return Column._from_logical_expr(
        SortExpr(self._logical_expr, ascending=True, nulls_last=False)
    )

asc_nulls_last

asc_nulls_last() -> Column

Apply ascending order putting nulls last to this column during a dataframe sort or order_by.

This method creates an expression that provides a column and sort order to the sort function.

Returns:

  • Column ( Column ) –

    A Column expression that provides a column and sort order to the sort function

Sort by age in ascending order with nulls last
# Sort a dataframe by age in ascending order, with nulls appearing last
df.sort(col("age").asc_nulls_last()).show()
Sort using column reference
# Sort using column reference with ascending order and nulls last
df.sort(col("age").asc_nulls_last()).show()
Source code in src/fenic/api/column.py
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
def asc_nulls_last(self) -> Column:
    """Apply ascending order putting nulls last to this column during a dataframe sort or order_by.

    This method creates an expression that provides a column and sort order to the sort function.

    Returns:
        Column: A Column expression that provides a column and sort order to the sort function

    Example: Sort by age in ascending order with nulls last
        ```python
        # Sort a dataframe by age in ascending order, with nulls appearing last
        df.sort(col("age").asc_nulls_last()).show()
        ```

    Example: Sort using column reference
        ```python
        # Sort using column reference with ascending order and nulls last
        df.sort(col("age").asc_nulls_last()).show()
        ```
    """
    return Column._from_logical_expr(
        SortExpr(self._logical_expr, ascending=True, nulls_last=True)
    )

cast

cast(data_type: DataType) -> Column

Cast the column to a new data type.

This method creates an expression that casts the column to a specified data type. The casting behavior depends on the source and target types:

Primitive type casting:

  • Numeric types (IntegerType, FloatType, DoubleType) can be cast between each other
  • Numeric types can be cast to/from StringType
  • BooleanType can be cast to/from numeric types and StringType
  • StringType cannot be directly cast to BooleanType (will raise TypeError)

Complex type casting:

  • ArrayType can only be cast to another ArrayType (with castable element types)
  • StructType can only be cast to another StructType (with matching/castable fields)
  • Primitive types cannot be cast to/from complex types

Parameters:

  • data_type (DataType) –

    The target DataType to cast the column to

Returns:

  • Column ( Column ) –

    A Column representing the casted expression

Cast integer to string
# Convert an integer column to string type
df.select(col("int_col").cast(StringType))
Cast array of integers to array of strings
# Convert an array of integers to an array of strings
df.select(col("int_array").cast(ArrayType(element_type=StringType)))
Cast struct fields to different types
# Convert struct fields to different types
new_type = StructType([
    StructField("id", StringType),
    StructField("value", FloatType)
])
df.select(col("data_struct").cast(new_type))

Raises:

  • TypeError

    If the requested cast operation is not supported

Source code in src/fenic/api/column.py
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
def cast(self, data_type: DataType) -> Column:
    """Cast the column to a new data type.

    This method creates an expression that casts the column to a specified data type.
    The casting behavior depends on the source and target types:

    Primitive type casting:

    - Numeric types (IntegerType, FloatType, DoubleType) can be cast between each other
    - Numeric types can be cast to/from StringType
    - BooleanType can be cast to/from numeric types and StringType
    - StringType cannot be directly cast to BooleanType (will raise TypeError)

    Complex type casting:

    - ArrayType can only be cast to another ArrayType (with castable element types)
    - StructType can only be cast to another StructType (with matching/castable fields)
    - Primitive types cannot be cast to/from complex types

    Args:
        data_type (DataType): The target DataType to cast the column to

    Returns:
        Column: A Column representing the casted expression

    Example: Cast integer to string
        ```python
        # Convert an integer column to string type
        df.select(col("int_col").cast(StringType))
        ```

    Example: Cast array of integers to array of strings
        ```python
        # Convert an array of integers to an array of strings
        df.select(col("int_array").cast(ArrayType(element_type=StringType)))
        ```

    Example: Cast struct fields to different types
        ```python
        # Convert struct fields to different types
        new_type = StructType([
            StructField("id", StringType),
            StructField("value", FloatType)
        ])
        df.select(col("data_struct").cast(new_type))
        ```

    Raises:
        TypeError: If the requested cast operation is not supported
    """
    return Column._from_logical_expr(CastExpr(self._logical_expr, data_type))

contains

contains(other: Union[str, Column]) -> Column

Check if the column contains a substring.

This method creates a boolean expression that checks if each value in the column contains the specified substring. The substring can be either a literal string or a column expression.

Parameters:

  • other (Union[str, Column]) –

    The substring to search for (can be a string or column expression)

Returns:

  • Column ( Column ) –

    A boolean column indicating whether each value contains the substring

Find rows where name contains "john"
# Filter rows where the name column contains "john"
df.filter(col("name").contains("john"))
Find rows where text contains a dynamic pattern
# Filter rows where text contains a value from another column
df.filter(col("text").contains(col("pattern")))
Source code in src/fenic/api/column.py
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
def contains(self, other: Union[str, Column]) -> Column:
    """Check if the column contains a substring.

    This method creates a boolean expression that checks if each value in the column
    contains the specified substring. The substring can be either a literal string
    or a column expression.

    Args:
        other (Union[str, Column]): The substring to search for (can be a string or column expression)

    Returns:
        Column: A boolean column indicating whether each value contains the substring

    Example: Find rows where name contains "john"
        ```python
        # Filter rows where the name column contains "john"
        df.filter(col("name").contains("john"))
        ```

    Example: Find rows where text contains a dynamic pattern
        ```python
        # Filter rows where text contains a value from another column
        df.filter(col("text").contains(col("pattern")))
        ```
    """
    if isinstance(other, str):
        return Column._from_logical_expr(ContainsExpr(self._logical_expr, other))
    else:
        return Column._from_logical_expr(
            ContainsExpr(self._logical_expr, other._logical_expr)
        )

contains_any

contains_any(others: List[str], case_insensitive: bool = True) -> Column

Check if the column contains any of the specified substrings.

This method creates a boolean expression that checks if each value in the column contains any of the specified substrings. The matching can be case-sensitive or case-insensitive.

Parameters:

  • others (List[str]) –

    List of substrings to search for

  • case_insensitive (bool, default: True ) –

    Whether to perform case-insensitive matching (default: True)

Returns:

  • Column ( Column ) –

    A boolean column indicating whether each value contains any substring

Find rows where name contains "john" or "jane" (case-insensitive)
# Filter rows where name contains either "john" or "jane"
df.filter(col("name").contains_any(["john", "jane"]))
Case-sensitive matching
# Filter rows with case-sensitive matching
df.filter(col("name").contains_any(["John", "Jane"], case_insensitive=False))
Source code in src/fenic/api/column.py
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
def contains_any(self, others: List[str], case_insensitive: bool = True) -> Column:
    """Check if the column contains any of the specified substrings.

    This method creates a boolean expression that checks if each value in the column
    contains any of the specified substrings. The matching can be case-sensitive or
    case-insensitive.

    Args:
        others (List[str]): List of substrings to search for
        case_insensitive (bool): Whether to perform case-insensitive matching (default: True)

    Returns:
        Column: A boolean column indicating whether each value contains any substring

    Example: Find rows where name contains "john" or "jane" (case-insensitive)
        ```python
        # Filter rows where name contains either "john" or "jane"
        df.filter(col("name").contains_any(["john", "jane"]))
        ```

    Example: Case-sensitive matching
        ```python
        # Filter rows with case-sensitive matching
        df.filter(col("name").contains_any(["John", "Jane"], case_insensitive=False))
        ```
    """
    return Column._from_logical_expr(
        ContainsAnyExpr(self._logical_expr, others, case_insensitive)
    )

desc

desc() -> Column

Apply descending order to this column during a dataframe sort or order_by.

This method creates an expression that provides a column and sort order to the sort function.

Returns:

  • Column ( Column ) –

    A Column expression that provides a column and sort order to the sort function

Sort by age in descending order
# Sort a dataframe by age in descending order
df.sort(col("age").desc()).show()
Sort using column reference
# Sort using column reference with descending order
df.sort(col("age").desc()).show()
Source code in src/fenic/api/column.py
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
def desc(self) -> Column:
    """Apply descending order to this column during a dataframe sort or order_by.

    This method creates an expression that provides a column and sort order to the sort function.

    Returns:
        Column: A Column expression that provides a column and sort order to the sort function

    Example: Sort by age in descending order
        ```python
        # Sort a dataframe by age in descending order
        df.sort(col("age").desc()).show()
        ```

    Example: Sort using column reference
        ```python
        # Sort using column reference with descending order
        df.sort(col("age").desc()).show()
        ```
    """
    return Column._from_logical_expr(SortExpr(self._logical_expr, ascending=False))

desc_nulls_first

desc_nulls_first() -> Column

Apply descending order putting nulls first to this column during a dataframe sort or order_by.

This method creates an expression that provides a column and sort order to the sort function

Returns:

  • Column ( Column ) –

    A Column expression that provides a column and sort order to the sort function

Sort by age in descending order with nulls first
df.sort(col("age").desc_nulls_first()).show()
Sort using column reference
df.sort(col("age").desc_nulls_first()).show()
Source code in src/fenic/api/column.py
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
def desc_nulls_first(self) -> Column:
    """Apply descending order putting nulls first to this column during a dataframe sort or order_by.

    This method creates an expression that provides a column and sort order to the sort function

    Returns:
        Column: A Column expression that provides a column and sort order to the sort function

    Example: Sort by age in descending order with nulls first
        ```python
        df.sort(col("age").desc_nulls_first()).show()
        ```

    Example: Sort using column reference
        ```python
        df.sort(col("age").desc_nulls_first()).show()
        ```
    """
    return Column._from_logical_expr(
        SortExpr(self._logical_expr, ascending=False, nulls_last=False)
    )

desc_nulls_last

desc_nulls_last() -> Column

Apply descending order putting nulls last to this column during a dataframe sort or order_by.

This method creates an expression that provides a column and sort order to the sort function.

Returns:

  • Column ( Column ) –

    A Column expression that provides a column and sort order to the sort function

Sort by age in descending order with nulls last
# Sort a dataframe by age in descending order, with nulls appearing last
df.sort(col("age").desc_nulls_last()).show()
Sort using column reference
# Sort using column reference with descending order and nulls last
df.sort(col("age").desc_nulls_last()).show()
Source code in src/fenic/api/column.py
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
def desc_nulls_last(self) -> Column:
    """Apply descending order putting nulls last to this column during a dataframe sort or order_by.

    This method creates an expression that provides a column and sort order to the sort function.

    Returns:
        Column: A Column expression that provides a column and sort order to the sort function

    Example: Sort by age in descending order with nulls last
        ```python
        # Sort a dataframe by age in descending order, with nulls appearing last
        df.sort(col("age").desc_nulls_last()).show()
        ```

    Example: Sort using column reference
        ```python
        # Sort using column reference with descending order and nulls last
        df.sort(col("age").desc_nulls_last()).show()
        ```
    """
    return Column._from_logical_expr(
        SortExpr(self._logical_expr, ascending=False, nulls_last=True)
    )

ends_with

ends_with(other: Union[str, Column]) -> Column

Check if the column ends with a substring.

This method creates a boolean expression that checks if each value in the column ends with the specified substring. The substring can be either a literal string or a column expression.

Parameters:

  • other (Union[str, Column]) –

    The substring to check for at the end (can be a string or column expression)

Returns:

  • Column ( Column ) –

    A boolean column indicating whether each value ends with the substring

Find rows where email ends with "@gmail.com"
df.filter(col("email").ends_with("@gmail.com"))
Find rows where text ends with a dynamic pattern
df.filter(col("text").ends_with(col("suffix")))

Raises:

  • ValueError

    If the substring ends with a regular expression anchor ($)

Source code in src/fenic/api/column.py
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
def ends_with(self, other: Union[str, Column]) -> Column:
    """Check if the column ends with a substring.

    This method creates a boolean expression that checks if each value in the column
    ends with the specified substring. The substring can be either a literal string
    or a column expression.

    Args:
        other (Union[str, Column]): The substring to check for at the end (can be a string or column expression)

    Returns:
        Column: A boolean column indicating whether each value ends with the substring

    Example: Find rows where email ends with "@gmail.com"
        ```python
        df.filter(col("email").ends_with("@gmail.com"))
        ```

    Example: Find rows where text ends with a dynamic pattern
        ```python
        df.filter(col("text").ends_with(col("suffix")))
        ```

    Raises:
        ValueError: If the substring ends with a regular expression anchor ($)
    """
    if isinstance(other, str):
        return Column._from_logical_expr(EndsWithExpr(self._logical_expr, other))
    else:
        return Column._from_logical_expr(
            EndsWithExpr(self._logical_expr, other._logical_expr)
        )

get_item

get_item(key: Union[str, int]) -> Column

Access an item in a struct or array column.

This method allows accessing elements in complex data types:

  • For array columns, the key should be an integer index
  • For struct columns, the key should be a field name

Parameters:

  • key (Union[str, int]) –

    The index (for arrays) or field name (for structs) to access

Returns:

  • Column ( Column ) –

    A Column representing the accessed item

Access an array element
# Get the first element from an array column
df.select(col("array_column").get_item(0))
Access a struct field
# Get a field from a struct column
df.select(col("struct_column").get_item("field_name"))
Source code in src/fenic/api/column.py
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
def get_item(self, key: Union[str, int]) -> Column:
    """Access an item in a struct or array column.

    This method allows accessing elements in complex data types:

    - For array columns, the key should be an integer index
    - For struct columns, the key should be a field name

    Args:
        key (Union[str, int]): The index (for arrays) or field name (for structs) to access

    Returns:
        Column: A Column representing the accessed item

    Example: Access an array element
        ```python
        # Get the first element from an array column
        df.select(col("array_column").get_item(0))
        ```

    Example: Access a struct field
        ```python
        # Get a field from a struct column
        df.select(col("struct_column").get_item("field_name"))
        ```
    """
    return Column._from_logical_expr(IndexExpr(self._logical_expr, key))

ilike

ilike(other: str) -> Column

Check if the column matches a SQL LIKE pattern (case-insensitive).

This method creates a boolean expression that checks if each value in the column matches the specified SQL LIKE pattern, ignoring case. The pattern must be a literal string and cannot be a column expression.

SQL LIKE pattern syntax:

  • % matches any sequence of characters
  • _ matches any single character

Parameters:

  • other (str) –

    The SQL LIKE pattern to match against

Returns:

  • Column ( Column ) –

    A boolean column indicating whether each value matches the pattern

Find rows where name starts with "j" and ends with "n" (case-insensitive)
# Filter rows where name matches the pattern "j%n" (case-insensitive)
df.filter(col("name").ilike("j%n"))
Find rows where code matches pattern (case-insensitive)
# Filter rows where code matches the pattern "a_b%" (case-insensitive)
df.filter(col("code").ilike("a_b%"))
Source code in src/fenic/api/column.py
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
def ilike(self, other: str) -> Column:
    r"""Check if the column matches a SQL LIKE pattern (case-insensitive).

    This method creates a boolean expression that checks if each value in the column
    matches the specified SQL LIKE pattern, ignoring case. The pattern must be a literal string
    and cannot be a column expression.

    SQL LIKE pattern syntax:

    - % matches any sequence of characters
    - _ matches any single character

    Args:
        other (str): The SQL LIKE pattern to match against

    Returns:
        Column: A boolean column indicating whether each value matches the pattern

    Example: Find rows where name starts with "j" and ends with "n" (case-insensitive)
        ```python
        # Filter rows where name matches the pattern "j%n" (case-insensitive)
        df.filter(col("name").ilike("j%n"))
        ```

    Example: Find rows where code matches pattern (case-insensitive)
        ```python
        # Filter rows where code matches the pattern "a_b%" (case-insensitive)
        df.filter(col("code").ilike("a_b%"))
        ```
    """
    return Column._from_logical_expr(ILikeExpr(self._logical_expr, other))

is_in

is_in(other: Union[List[Any], ColumnOrName]) -> Column

Check if the column is in a list of values or a column expression.

Parameters:

  • other (Union[List[Any], ColumnOrName]) –

    A list of values or a Column expression

Returns:

  • Column ( Column ) –

    A Column expression representing whether each element of Column is in the list

Check if name is in a list of values
# Filter rows where name is in a list of values
df.filter(col("name").is_in(["Alice", "Bob"]))
Check if value is in another column
# Filter rows where name is in another column
df.filter(col("name").is_in(col("other_column")))
Source code in src/fenic/api/column.py
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
def is_in(self, other: Union[List[Any], ColumnOrName]) -> Column:
    """Check if the column is in a list of values or a column expression.

    Args:
        other (Union[List[Any], ColumnOrName]): A list of values or a Column expression

    Returns:
        Column: A Column expression representing whether each element of Column is in the list

    Example: Check if name is in a list of values
        ```python
        # Filter rows where name is in a list of values
        df.filter(col("name").is_in(["Alice", "Bob"]))
        ```

    Example: Check if value is in another column
        ```python
        # Filter rows where name is in another column
        df.filter(col("name").is_in(col("other_column")))
        ```
    """
    if isinstance(other, list):
        try:
            type_ = infer_dtype_from_pyobj(other)
            return Column._from_logical_expr(InExpr(self._logical_expr, LiteralExpr(other, type_)))
        except TypeInferenceError as e:
            raise ValidationError(f"Cannot apply IN on {other}. List argument to IN must be be a valid Python List literal.") from e
    else:
        return Column._from_logical_expr(InExpr(self._logical_expr, other._logical_expr))

is_not_null

is_not_null() -> Column

Check if the column contains non-NULL values.

This method creates an expression that evaluates to TRUE when the column value is not NULL.

Returns:

  • Column ( Column ) –

    A Column representing a boolean expression that is TRUE when this column is not NULL

Filter rows where a column is not NULL
df.filter(col("some_column").is_not_null())
Use in a complex condition
df.filter(col("col1").is_not_null() & (col("col2") <= 50))
Source code in src/fenic/api/column.py
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
def is_not_null(self) -> Column:
    """Check if the column contains non-NULL values.

    This method creates an expression that evaluates to TRUE when the column value is not NULL.

    Returns:
        Column: A Column representing a boolean expression that is TRUE when this column is not NULL

    Example: Filter rows where a column is not NULL
        ```python
        df.filter(col("some_column").is_not_null())
        ```

    Example: Use in a complex condition
        ```python
        df.filter(col("col1").is_not_null() & (col("col2") <= 50))
        ```
    """
    return Column._from_logical_expr(IsNullExpr(self._logical_expr, False))

is_null

is_null() -> Column

Check if the column contains NULL values.

This method creates an expression that evaluates to TRUE when the column value is NULL.

Returns:

  • Column ( Column ) –

    A Column representing a boolean expression that is TRUE when this column is NULL

Filter rows where a column is NULL
# Filter rows where some_column is NULL
df.filter(col("some_column").is_null())
Use in a complex condition
# Filter rows where col1 is NULL or col2 is greater than 100
df.filter(col("col1").is_null() | (col("col2") > 100))
Source code in src/fenic/api/column.py
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
def is_null(self) -> Column:
    """Check if the column contains NULL values.

    This method creates an expression that evaluates to TRUE when the column value is NULL.

    Returns:
        Column: A Column representing a boolean expression that is TRUE when this column is NULL

    Example: Filter rows where a column is NULL
        ```python
        # Filter rows where some_column is NULL
        df.filter(col("some_column").is_null())
        ```

    Example: Use in a complex condition
        ```python
        # Filter rows where col1 is NULL or col2 is greater than 100
        df.filter(col("col1").is_null() | (col("col2") > 100))
        ```
    """
    return Column._from_logical_expr(IsNullExpr(self._logical_expr, True))

like

like(other: str) -> Column

Check if the column matches a SQL LIKE pattern.

This method creates a boolean expression that checks if each value in the column matches the specified SQL LIKE pattern. The pattern must be a literal string and cannot be a column expression.

SQL LIKE pattern syntax:

  • % matches any sequence of characters
  • _ matches any single character

Parameters:

  • other (str) –

    The SQL LIKE pattern to match against

Returns:

  • Column ( Column ) –

    A boolean column indicating whether each value matches the pattern

Find rows where name starts with "J" and ends with "n"
# Filter rows where name matches the pattern "J%n"
df.filter(col("name").like("J%n"))
Find rows where code matches specific pattern
# Filter rows where code matches the pattern "A_B%"
df.filter(col("code").like("A_B%"))
Source code in src/fenic/api/column.py
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
def like(self, other: str) -> Column:
    r"""Check if the column matches a SQL LIKE pattern.

    This method creates a boolean expression that checks if each value in the column
    matches the specified SQL LIKE pattern. The pattern must be a literal string
    and cannot be a column expression.

    SQL LIKE pattern syntax:

    - % matches any sequence of characters
    - _ matches any single character

    Args:
        other (str): The SQL LIKE pattern to match against

    Returns:
        Column: A boolean column indicating whether each value matches the pattern

    Example: Find rows where name starts with "J" and ends with "n"
        ```python
        # Filter rows where name matches the pattern "J%n"
        df.filter(col("name").like("J%n"))
        ```

    Example: Find rows where code matches specific pattern
        ```python
        # Filter rows where code matches the pattern "A_B%"
        df.filter(col("code").like("A_B%"))
        ```
    """
    return Column._from_logical_expr(LikeExpr(self._logical_expr, other))

otherwise

otherwise(value: Column) -> Column

Evaluates a list of conditions and returns one of multiple possible result expressions.

If Column.otherwise() is not invoked, None is returned for unmatched conditions. Otherwise() will return for rows with None inputs.

Parameters:

  • value (Column) –

    A literal value or Column expression to return

Returns:

  • Column ( Column ) –

    A Column expression representing whether each element of Column is not matched by any previous conditions

Use when/otherwise for conditional logic
# Create a DataFrame with age and name columns
df = session.createDataFrame(
    {"age": [2, 5]}, {"name": ["Alice", "Bob"]}
)

# Use when/otherwise to create a case result column
df.select(
    col("name"),
    when(col("age") > 3, 1).otherwise(0).alias("case_result")
).show()
# Output:
# +-----+-----------+
# | name|case_result|
# +-----+-----------+
# |Alice|          0|
# |  Bob|          1|
# +-----+-----------+
Source code in src/fenic/api/column.py
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
def otherwise(self, value: Column) -> Column:
    """Evaluates a list of conditions and returns one of multiple possible result expressions.

    If Column.otherwise() is not invoked, None is returned for unmatched conditions.
    Otherwise() will return for rows with None inputs.

    Args:
        value (Column): A literal value or Column expression to return

    Returns:
        Column: A Column expression representing whether each element of Column is not matched by any previous conditions

    Example: Use when/otherwise for conditional logic
        ```python
        # Create a DataFrame with age and name columns
        df = session.createDataFrame(
            {"age": [2, 5]}, {"name": ["Alice", "Bob"]}
        )

        # Use when/otherwise to create a case result column
        df.select(
            col("name"),
            when(col("age") > 3, 1).otherwise(0).alias("case_result")
        ).show()
        # Output:
        # +-----+-----------+
        # | name|case_result|
        # +-----+-----------+
        # |Alice|          0|
        # |  Bob|          1|
        # +-----+-----------+
        ```
    """
    return Column._from_logical_expr(OtherwiseExpr(self._logical_expr, value._logical_expr))

rlike

rlike(other: str) -> Column

Check if the column matches a regular expression pattern.

This method creates a boolean expression that checks if each value in the column matches the specified regular expression pattern. The pattern must be a literal string and cannot be a column expression.

Parameters:

  • other (str) –

    The regular expression pattern to match against

Returns:

  • Column ( Column ) –

    A boolean column indicating whether each value matches the pattern

Find rows where phone number matches pattern
# Filter rows where phone number matches a specific pattern
df.filter(col("phone").rlike(r"^\d{3}-\d{3}-\d{4}$"))
Find rows where text contains word boundaries
# Filter rows where text contains a word with boundaries
df.filter(col("text").rlike(r"\bhello\b"))
Source code in src/fenic/api/column.py
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
def rlike(self, other: str) -> Column:
    r"""Check if the column matches a regular expression pattern.

    This method creates a boolean expression that checks if each value in the column
    matches the specified regular expression pattern. The pattern must be a literal string
    and cannot be a column expression.

    Args:
        other (str): The regular expression pattern to match against

    Returns:
        Column: A boolean column indicating whether each value matches the pattern

    Example: Find rows where phone number matches pattern
        ```python
        # Filter rows where phone number matches a specific pattern
        df.filter(col("phone").rlike(r"^\d{3}-\d{3}-\d{4}$"))
        ```

    Example: Find rows where text contains word boundaries
        ```python
        # Filter rows where text contains a word with boundaries
        df.filter(col("text").rlike(r"\bhello\b"))
        ```
    """
    return Column._from_logical_expr(RLikeExpr(self._logical_expr, other))

starts_with

starts_with(other: Union[str, Column]) -> Column

Check if the column starts with a substring.

This method creates a boolean expression that checks if each value in the column starts with the specified substring. The substring can be either a literal string or a column expression.

Parameters:

  • other (Union[str, Column]) –

    The substring to check for at the start (can be a string or column expression)

Returns:

  • Column ( Column ) –

    A boolean column indicating whether each value starts with the substring

Find rows where name starts with "Mr"
# Filter rows where name starts with "Mr"
df.filter(col("name").starts_with("Mr"))
Find rows where text starts with a dynamic pattern
# Filter rows where text starts with a value from another column
df.filter(col("text").starts_with(col("prefix")))

Raises:

  • ValueError

    If the substring starts with a regular expression anchor (^)

Source code in src/fenic/api/column.py
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
def starts_with(self, other: Union[str, Column]) -> Column:
    """Check if the column starts with a substring.

    This method creates a boolean expression that checks if each value in the column
    starts with the specified substring. The substring can be either a literal string
    or a column expression.

    Args:
        other (Union[str, Column]): The substring to check for at the start (can be a string or column expression)

    Returns:
        Column: A boolean column indicating whether each value starts with the substring

    Example: Find rows where name starts with "Mr"
        ```python
        # Filter rows where name starts with "Mr"
        df.filter(col("name").starts_with("Mr"))
        ```

    Example: Find rows where text starts with a dynamic pattern
        ```python
        # Filter rows where text starts with a value from another column
        df.filter(col("text").starts_with(col("prefix")))
        ```

    Raises:
        ValueError: If the substring starts with a regular expression anchor (^)
    """
    if isinstance(other, str):
        return Column._from_logical_expr(StartsWithExpr(self._logical_expr, other))
    else:
        return Column._from_logical_expr(
            StartsWithExpr(self._logical_expr, other._logical_expr)
        )

when

when(condition: Column, value: Column) -> Column

Evaluates a list of conditions and returns one of multiple possible result expressions.

If Column.otherwise() is not invoked, None is returned for unmatched conditions. Otherwise() will return for rows with None inputs.

Parameters:

  • condition (Column) –

    A boolean Column expression

  • value (Column) –

    A literal value or Column expression to return if the condition is true

Returns:

  • Column ( Column ) –

    A Column expression representing whether each element of Column matches the condition

Raises:

  • TypeError

    If the condition is not a boolean Column expression

Use when/otherwise for conditional logic
# Create a DataFrame with age and name columns
df = session.createDataFrame(
    {"age": [2, 5]}, {"name": ["Alice", "Bob"]}
)

# Use when/otherwise to create a case result column
df.select(
    col("name"),
    when(col("age") > 3, 1).otherwise(0).alias("case_result")
).show()
# Output:
# +-----+-----------+
# | name|case_result|
# +-----+-----------+
# |Alice|          0|
# |  Bob|          1|
# +-----+-----------+
Source code in src/fenic/api/column.py
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
def when(self, condition: Column, value: Column) -> Column:
    """Evaluates a list of conditions and returns one of multiple possible result expressions.

    If Column.otherwise() is not invoked, None is returned for unmatched conditions.
    Otherwise() will return for rows with None inputs.

    Args:
        condition (Column): A boolean Column expression
        value (Column): A literal value or Column expression to return if the condition is true

    Returns:
        Column: A Column expression representing whether each element of Column matches the condition

    Raises:
        TypeError: If the condition is not a boolean Column expression

    Example: Use when/otherwise for conditional logic
        ```python
        # Create a DataFrame with age and name columns
        df = session.createDataFrame(
            {"age": [2, 5]}, {"name": ["Alice", "Bob"]}
        )

        # Use when/otherwise to create a case result column
        df.select(
            col("name"),
            when(col("age") > 3, 1).otherwise(0).alias("case_result")
        ).show()
        # Output:
        # +-----+-----------+
        # | name|case_result|
        # +-----+-----------+
        # |Alice|          0|
        # |  Bob|          1|
        # +-----+-----------+
        ```
    """
    return Column._from_logical_expr(WhenExpr(self._logical_expr, condition._logical_expr, value._logical_expr))

ColumnField

Represents a typed column in a DataFrame schema.

A ColumnField defines the structure of a single column by specifying its name and data type. This is used as a building block for DataFrame schemas.

Attributes:

  • name (str) –

    The name of the column.

  • data_type (DataType) –

    The data type of the column, as a DataType instance.

DataFrame

A data collection organized into named columns.

The DataFrame class represents a lazily evaluated computation on data. Operations on DataFrame build up a logical query plan that is only executed when an action like show(), to_polars(), to_pandas(), to_arrow(), to_pydict(), to_pylist(), or count() is called.

The DataFrame supports method chaining for building complex transformations.

Create and transform a DataFrame
# Create a DataFrame from a dictionary
df = session.create_dataframe({"id": [1, 2, 3], "value": ["a", "b", "c"]})

# Chain transformations
result = df.filter(col("id") > 1).select("id", "value")

# Show results
result.show()
# Output:
# +---+-----+
# | id|value|
# +---+-----+
# |  2|    b|
# |  3|    c|
# +---+-----+

Methods:

  • agg

    Aggregate on the entire DataFrame without groups.

  • cache

    Alias for persist(). Mark DataFrame for caching after first computation.

  • collect

    Execute the DataFrame computation and return the result as a QueryResult.

  • count

    Count the number of rows in the DataFrame.

  • drop

    Remove one or more columns from this DataFrame.

  • drop_duplicates

    Return a DataFrame with duplicate rows removed.

  • explain

    Display the logical plan of the DataFrame.

  • explode

    Create a new row for each element in an array column.

  • filter

    Filters rows using the given condition.

  • group_by

    Groups the DataFrame using the specified columns.

  • join

    Joins this DataFrame with another DataFrame.

  • limit

    Limits the number of rows to the specified number.

  • lineage

    Create a Lineage object to trace data through transformations.

  • order_by

    Sort the DataFrame by the specified columns. Alias for sort().

  • persist

    Mark this DataFrame to be persisted after first computation.

  • select

    Projects a set of Column expressions or column names.

  • show

    Display the DataFrame content in a tabular form.

  • sort

    Sort the DataFrame by the specified columns.

  • to_arrow

    Execute the DataFrame computation and return an Apache Arrow Table.

  • to_pandas

    Execute the DataFrame computation and return a Pandas DataFrame.

  • to_polars

    Execute the DataFrame computation and return the result as a Polars DataFrame.

  • to_pydict

    Execute the DataFrame computation and return a dictionary of column arrays.

  • to_pylist

    Execute the DataFrame computation and return a list of row dictionaries.

  • union

    Return a new DataFrame containing the union of rows in this and another DataFrame.

  • unnest

    Unnest the specified struct columns into separate columns.

  • where

    Filters rows using the given condition (alias for filter()).

  • with_column

    Add a new column or replace an existing column.

  • with_column_renamed

    Rename a column. No-op if the column does not exist.

Attributes:

columns property

columns: List[str]

Get list of column names.

Returns:

  • List[str]

    List[str]: List of all column names in the DataFrame

Examples:

>>> df.columns
['name', 'age', 'city']

schema property

schema: Schema

Get the schema of this DataFrame.

Returns:

  • Schema ( Schema ) –

    Schema containing field names and data types

Examples:

>>> df.schema
Schema([
    ColumnField('name', StringType),
    ColumnField('age', IntegerType)
])

semantic property

semantic: SemanticExtensions

Interface for semantic operations on the DataFrame.

write property

write: DataFrameWriter

Interface for saving the content of the DataFrame.

Returns:

  • DataFrameWriter ( DataFrameWriter ) –

    Writer interface to write DataFrame.

agg

agg(*exprs: Union[Column, Dict[str, str]]) -> DataFrame

Aggregate on the entire DataFrame without groups.

This is equivalent to group_by() without any grouping columns.

Parameters:

  • *exprs (Union[Column, Dict[str, str]], default: () ) –

    Aggregation expressions or dictionary of aggregations.

Returns:

  • DataFrame ( DataFrame ) –

    Aggregation results.

Multiple aggregations
# Create sample DataFrame
df = session.create_dataframe({
    "salary": [80000, 70000, 90000, 75000, 85000],
    "age": [25, 30, 35, 28, 32]
})

# Multiple aggregations
df.agg(
    count().alias("total_rows"),
    avg(col("salary")).alias("avg_salary")
).show()
# Output:
# +----------+-----------+
# |total_rows|avg_salary|
# +----------+-----------+
# |         5|   80000.0|
# +----------+-----------+
Dictionary style
# Dictionary style
df.agg({col("salary"): "avg", col("age"): "max"}).show()
# Output:
# +-----------+--------+
# |avg(salary)|max(age)|
# +-----------+--------+
# |    80000.0|      35|
# +-----------+--------+
Source code in src/fenic/api/dataframe/dataframe.py
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
def agg(self, *exprs: Union[Column, Dict[str, str]]) -> DataFrame:
    """Aggregate on the entire DataFrame without groups.

    This is equivalent to group_by() without any grouping columns.

    Args:
        *exprs: Aggregation expressions or dictionary of aggregations.

    Returns:
        DataFrame: Aggregation results.

    Example: Multiple aggregations
        ```python
        # Create sample DataFrame
        df = session.create_dataframe({
            "salary": [80000, 70000, 90000, 75000, 85000],
            "age": [25, 30, 35, 28, 32]
        })

        # Multiple aggregations
        df.agg(
            count().alias("total_rows"),
            avg(col("salary")).alias("avg_salary")
        ).show()
        # Output:
        # +----------+-----------+
        # |total_rows|avg_salary|
        # +----------+-----------+
        # |         5|   80000.0|
        # +----------+-----------+
        ```

    Example: Dictionary style
        ```python
        # Dictionary style
        df.agg({col("salary"): "avg", col("age"): "max"}).show()
        # Output:
        # +-----------+--------+
        # |avg(salary)|max(age)|
        # +-----------+--------+
        # |    80000.0|      35|
        # +-----------+--------+
        ```
    """
    return self.group_by().agg(*exprs)

cache

cache() -> DataFrame

Alias for persist(). Mark DataFrame for caching after first computation.

Returns:

  • DataFrame ( DataFrame ) –

    Same DataFrame, but marked for caching

See Also

persist(): Full documentation of caching behavior

Source code in src/fenic/api/dataframe/dataframe.py
405
406
407
408
409
410
411
412
413
414
def cache(self) -> DataFrame:
    """Alias for persist(). Mark DataFrame for caching after first computation.

    Returns:
        DataFrame: Same DataFrame, but marked for caching

    See Also:
        persist(): Full documentation of caching behavior
    """
    return self.persist()

collect

collect(data_type: DataLikeType = 'polars') -> QueryResult

Execute the DataFrame computation and return the result as a QueryResult.

This is an action that triggers computation of the DataFrame query plan. All transformations and operations are executed, and the results are materialized into a QueryResult, which contains both the result data and the query metrics.

Parameters:

  • data_type (DataLikeType, default: 'polars' ) –

    The type of data to return

Returns:

  • QueryResult ( QueryResult ) –

    A QueryResult with materialized data and query metrics

Source code in src/fenic/api/dataframe/dataframe.py
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
def collect(self, data_type: DataLikeType = "polars") -> QueryResult:
    """Execute the DataFrame computation and return the result as a QueryResult.

    This is an action that triggers computation of the DataFrame query plan.
    All transformations and operations are executed, and the results are
    materialized into a QueryResult, which contains both the result data and the query metrics.

    Args:
        data_type: The type of data to return

    Returns:
        QueryResult: A QueryResult with materialized data and query metrics
    """
    result: Tuple[pl.DataFrame, QueryMetrics] = self._logical_plan.session_state.execution.collect(self._logical_plan)
    df, metrics = result
    logger.info(metrics.get_summary())

    if data_type == "polars":
        return QueryResult(df, metrics)
    elif data_type == "pandas":
        return QueryResult(df.to_pandas(use_pyarrow_extension_array=True), metrics)
    elif data_type == "arrow":
        return QueryResult(df.to_arrow(), metrics)
    elif data_type == "pydict":
        return QueryResult(df.to_dict(as_series=False), metrics)
    elif data_type == "pylist":
        return QueryResult(df.to_dicts(), metrics)
    else:
        raise ValidationError(f"Invalid data type: {data_type} in collect(). Valid data types are: polars, pandas, arrow, pydict, pylist")

count

count() -> int

Count the number of rows in the DataFrame.

This is an action that triggers computation of the DataFrame. The output is an integer representing the number of rows.

Returns:

  • int ( int ) –

    The number of rows in the DataFrame

Source code in src/fenic/api/dataframe/dataframe.py
339
340
341
342
343
344
345
346
347
348
def count(self) -> int:
    """Count the number of rows in the DataFrame.

    This is an action that triggers computation of the DataFrame.
    The output is an integer representing the number of rows.

    Returns:
        int: The number of rows in the DataFrame
    """
    return self._logical_plan.session_state.execution.count(self._logical_plan)[0]

drop

drop(*col_names: str) -> DataFrame

Remove one or more columns from this DataFrame.

Parameters:

  • *col_names (str, default: () ) –

    Names of columns to drop.

Returns:

  • DataFrame ( DataFrame ) –

    New DataFrame without specified columns.

Raises:

  • ValueError

    If any specified column doesn't exist in the DataFrame.

  • ValueError

    If dropping the columns would result in an empty DataFrame.

Drop single column
# Create sample DataFrame
df = session.create_dataframe({
    "id": [1, 2, 3],
    "name": ["Alice", "Bob", "Charlie"],
    "age": [25, 30, 35]
})

# Drop single column
df.drop("age").show()
# Output:
# +---+-------+
# | id|   name|
# +---+-------+
# |  1|  Alice|
# |  2|    Bob|
# |  3|Charlie|
# +---+-------+
Drop multiple columns
# Drop multiple columns
df.drop(col("id"), "age").show()
# Output:
# +-------+
# |   name|
# +-------+
# |  Alice|
# |    Bob|
# |Charlie|
# +-------+
Error when dropping non-existent column
# This will raise a ValueError
df.drop("non_existent_column")
# ValueError: Column 'non_existent_column' not found in DataFrame
Source code in src/fenic/api/dataframe/dataframe.py
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
def drop(self, *col_names: str) -> DataFrame:
    """Remove one or more columns from this DataFrame.

    Args:
        *col_names: Names of columns to drop.

    Returns:
        DataFrame: New DataFrame without specified columns.

    Raises:
        ValueError: If any specified column doesn't exist in the DataFrame.
        ValueError: If dropping the columns would result in an empty DataFrame.

    Example: Drop single column
        ```python
        # Create sample DataFrame
        df = session.create_dataframe({
            "id": [1, 2, 3],
            "name": ["Alice", "Bob", "Charlie"],
            "age": [25, 30, 35]
        })

        # Drop single column
        df.drop("age").show()
        # Output:
        # +---+-------+
        # | id|   name|
        # +---+-------+
        # |  1|  Alice|
        # |  2|    Bob|
        # |  3|Charlie|
        # +---+-------+
        ```

    Example: Drop multiple columns
        ```python
        # Drop multiple columns
        df.drop(col("id"), "age").show()
        # Output:
        # +-------+
        # |   name|
        # +-------+
        # |  Alice|
        # |    Bob|
        # |Charlie|
        # +-------+
        ```

    Example: Error when dropping non-existent column
        ```python
        # This will raise a ValueError
        df.drop("non_existent_column")
        # ValueError: Column 'non_existent_column' not found in DataFrame
        ```
    """
    if not col_names:
        return self

    current_cols = set(self.columns)
    to_drop = set(col_names)
    missing = to_drop - current_cols

    if missing:
        missing_str = (
            f"Column '{next(iter(missing))}'"
            if len(missing) == 1
            else f"Columns {sorted(missing)}"
        )
        raise ValueError(f"{missing_str} not found in DataFrame")

    remaining_cols = [
        col(c)._logical_expr for c in self.columns if c not in to_drop
    ]

    if not remaining_cols:
        raise ValueError("Cannot drop all columns from DataFrame")

    return self._from_logical_plan(
        Projection(self._logical_plan, remaining_cols)
    )

drop_duplicates

drop_duplicates(subset: Optional[List[str]] = None) -> DataFrame

Return a DataFrame with duplicate rows removed.

Parameters:

  • subset (Optional[List[str]], default: None ) –

    Column names to consider when identifying duplicates. If not provided, all columns are considered.

Returns:

  • DataFrame ( DataFrame ) –

    A new DataFrame with duplicate rows removed.

Raises:

  • ValueError

    If a specified column is not present in the current DataFrame schema.

Remove duplicates considering specific columns
# Create sample DataFrame
df = session.create_dataframe({
    "c1": [1, 2, 3, 1],
    "c2": ["a", "a", "a", "a"],
    "c3": ["b", "b", "b", "b"]
})

# Remove duplicates considering all columns
df.drop_duplicates([col("c1"), col("c2"), col("c3")]).show()
# Output:
# +---+---+---+
# | c1| c2| c3|
# +---+---+---+
# |  1|  a|  b|
# |  2|  a|  b|
# |  3|  a|  b|
# +---+---+---+

# Remove duplicates considering only c1
df.drop_duplicates([col("c1")]).show()
# Output:
# +---+---+---+
# | c1| c2| c3|
# +---+---+---+
# |  1|  a|  b|
# |  2|  a|  b|
# |  3|  a|  b|
# +---+---+---+
Source code in src/fenic/api/dataframe/dataframe.py
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
def drop_duplicates(
    self,
    subset: Optional[List[str]] = None,
) -> DataFrame:
    """Return a DataFrame with duplicate rows removed.

    Args:
        subset: Column names to consider when identifying duplicates. If not provided, all columns are considered.

    Returns:
        DataFrame: A new DataFrame with duplicate rows removed.

    Raises:
        ValueError: If a specified column is not present in the current DataFrame schema.

    Example: Remove duplicates considering specific columns
        ```python
        # Create sample DataFrame
        df = session.create_dataframe({
            "c1": [1, 2, 3, 1],
            "c2": ["a", "a", "a", "a"],
            "c3": ["b", "b", "b", "b"]
        })

        # Remove duplicates considering all columns
        df.drop_duplicates([col("c1"), col("c2"), col("c3")]).show()
        # Output:
        # +---+---+---+
        # | c1| c2| c3|
        # +---+---+---+
        # |  1|  a|  b|
        # |  2|  a|  b|
        # |  3|  a|  b|
        # +---+---+---+

        # Remove duplicates considering only c1
        df.drop_duplicates([col("c1")]).show()
        # Output:
        # +---+---+---+
        # | c1| c2| c3|
        # +---+---+---+
        # |  1|  a|  b|
        # |  2|  a|  b|
        # |  3|  a|  b|
        # +---+---+---+
        ```
    """
    exprs = []
    if subset:
        for c in subset:
            if c not in self.columns:
                raise TypeError(f"Column {c} not found in DataFrame.")
            exprs.append(col(c)._logical_expr)

    return self._from_logical_plan(
        DropDuplicates(self._logical_plan, exprs),
    )

explain

explain() -> None

Display the logical plan of the DataFrame.

Source code in src/fenic/api/dataframe/dataframe.py
221
222
223
def explain(self) -> None:
    """Display the logical plan of the DataFrame."""
    print(str(self._logical_plan))

explode

explode(column: ColumnOrName) -> DataFrame

Create a new row for each element in an array column.

This operation is useful for flattening nested data structures. For each row in the input DataFrame that contains an array/list in the specified column, this method will: 1. Create N new rows, where N is the length of the array 2. Each new row will be identical to the original row, except the array column will contain just a single element from the original array 3. Rows with NULL values or empty arrays in the specified column are filtered out

Parameters:

  • column (ColumnOrName) –

    Name of array column to explode (as string) or Column expression.

Returns:

  • DataFrame ( DataFrame ) –

    New DataFrame with the array column exploded into multiple rows.

Raises:

  • TypeError

    If column argument is not a string or Column.

Explode array column
# Create sample DataFrame
df = session.create_dataframe({
    "id": [1, 2, 3, 4],
    "tags": [["red", "blue"], ["green"], [], None],
    "name": ["Alice", "Bob", "Carol", "Dave"]
})

# Explode the tags column
df.explode("tags").show()
# Output:
# +---+-----+-----+
# | id| tags| name|
# +---+-----+-----+
# |  1|  red|Alice|
# |  1| blue|Alice|
# |  2|green|  Bob|
# +---+-----+-----+
Using column expression
# Explode using column expression
df.explode(col("tags")).show()
# Output:
# +---+-----+-----+
# | id| tags| name|
# +---+-----+-----+
# |  1|  red|Alice|
# |  1| blue|Alice|
# |  2|green|  Bob|
# +---+-----+-----+
Source code in src/fenic/api/dataframe/dataframe.py
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
def explode(self, column: ColumnOrName) -> DataFrame:
    """Create a new row for each element in an array column.

    This operation is useful for flattening nested data structures. For each row in the
    input DataFrame that contains an array/list in the specified column, this method will:
    1. Create N new rows, where N is the length of the array
    2. Each new row will be identical to the original row, except the array column will
       contain just a single element from the original array
    3. Rows with NULL values or empty arrays in the specified column are filtered out

    Args:
        column: Name of array column to explode (as string) or Column expression.

    Returns:
        DataFrame: New DataFrame with the array column exploded into multiple rows.

    Raises:
        TypeError: If column argument is not a string or Column.

    Example: Explode array column
        ```python
        # Create sample DataFrame
        df = session.create_dataframe({
            "id": [1, 2, 3, 4],
            "tags": [["red", "blue"], ["green"], [], None],
            "name": ["Alice", "Bob", "Carol", "Dave"]
        })

        # Explode the tags column
        df.explode("tags").show()
        # Output:
        # +---+-----+-----+
        # | id| tags| name|
        # +---+-----+-----+
        # |  1|  red|Alice|
        # |  1| blue|Alice|
        # |  2|green|  Bob|
        # +---+-----+-----+
        ```

    Example: Using column expression
        ```python
        # Explode using column expression
        df.explode(col("tags")).show()
        # Output:
        # +---+-----+-----+
        # | id| tags| name|
        # +---+-----+-----+
        # |  1|  red|Alice|
        # |  1| blue|Alice|
        # |  2|green|  Bob|
        # +---+-----+-----+
        ```
    """
    return self._from_logical_plan(
        Explode(self._logical_plan, Column._from_col_or_name(column)._logical_expr),
    )

filter

filter(condition: Column) -> DataFrame

Filters rows using the given condition.

Parameters:

  • condition (Column) –

    A Column expression that evaluates to a boolean

Returns:

  • DataFrame ( DataFrame ) –

    Filtered DataFrame

Filter with numeric comparison
# Create a DataFrame
df = session.create_dataframe({"age": [25, 30, 35], "name": ["Alice", "Bob", "Charlie"]})

# Filter with numeric comparison
df.filter(col("age") > 25).show()
# Output:
# +---+-------+
# |age|   name|
# +---+-------+
# | 30|    Bob|
# | 35|Charlie|
# +---+-------+
Filter with semantic predicate
# Filter with semantic predicate
df.filter((col("age") > 25) & semantic.predicate("This {feedback} mentions problems with the user interface or navigation")).show()
# Output:
# +---+-------+
# |age|   name|
# +---+-------+
# | 30|    Bob|
# | 35|Charlie|
# +---+-------+
Filter with multiple conditions
# Filter with multiple conditions
df.filter((col("age") > 25) & (col("age") <= 35)).show()
# Output:
# +---+-------+
# |age|   name|
# +---+-------+
# | 30|    Bob|
# | 35|Charlie|
# +---+-------+
Source code in src/fenic/api/dataframe/dataframe.py
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
def filter(self, condition: Column) -> DataFrame:
    """Filters rows using the given condition.

    Args:
        condition: A Column expression that evaluates to a boolean

    Returns:
        DataFrame: Filtered DataFrame

    Example: Filter with numeric comparison
        ```python
        # Create a DataFrame
        df = session.create_dataframe({"age": [25, 30, 35], "name": ["Alice", "Bob", "Charlie"]})

        # Filter with numeric comparison
        df.filter(col("age") > 25).show()
        # Output:
        # +---+-------+
        # |age|   name|
        # +---+-------+
        # | 30|    Bob|
        # | 35|Charlie|
        # +---+-------+
        ```

    Example: Filter with semantic predicate
        ```python
        # Filter with semantic predicate
        df.filter((col("age") > 25) & semantic.predicate("This {feedback} mentions problems with the user interface or navigation")).show()
        # Output:
        # +---+-------+
        # |age|   name|
        # +---+-------+
        # | 30|    Bob|
        # | 35|Charlie|
        # +---+-------+
        ```

    Example: Filter with multiple conditions
        ```python
        # Filter with multiple conditions
        df.filter((col("age") > 25) & (col("age") <= 35)).show()
        # Output:
        # +---+-------+
        # |age|   name|
        # +---+-------+
        # | 30|    Bob|
        # | 35|Charlie|
        # +---+-------+
        ```
    """
    return self._from_logical_plan(
        Filter(self._logical_plan, condition._logical_expr),
    )

group_by

group_by(*cols: ColumnOrName) -> GroupedData

Groups the DataFrame using the specified columns.

Parameters:

  • *cols (ColumnOrName, default: () ) –

    Columns to group by. Can be column names as strings or Column expressions.

Returns:

  • GroupedData ( GroupedData ) –

    Object for performing aggregations on the grouped data.

Group by single column
# Create sample DataFrame
df = session.create_dataframe({
    "department": ["IT", "HR", "IT", "HR", "IT"],
    "salary": [80000, 70000, 90000, 75000, 85000]
})

# Group by single column
df.group_by(col("department")).count().show()
# Output:
# +----------+-----+
# |department|count|
# +----------+-----+
# |        IT|    3|
# |        HR|    2|
# +----------+-----+
Group by multiple columns
# Group by multiple columns
df.group_by(col("department"), col("location")).agg({"salary": "avg"}).show()
# Output:
# +----------+--------+-----------+
# |department|location|avg(salary)|
# +----------+--------+-----------+
# |        IT|    NYC|    85000.0|
# |        HR|    NYC|    72500.0|
# +----------+--------+-----------+
Group by expression
# Group by expression
df.group_by(col("age").cast("int").alias("age_group")).count().show()
# Output:
# +---------+-----+
# |age_group|count|
# +---------+-----+
# |       20|    2|
# |       30|    3|
# |       40|    1|
# +---------+-----+
Source code in src/fenic/api/dataframe/dataframe.py
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
def group_by(self, *cols: ColumnOrName) -> GroupedData:
    """Groups the DataFrame using the specified columns.

    Args:
        *cols: Columns to group by. Can be column names as strings or Column expressions.

    Returns:
        GroupedData: Object for performing aggregations on the grouped data.

    Example: Group by single column
        ```python
        # Create sample DataFrame
        df = session.create_dataframe({
            "department": ["IT", "HR", "IT", "HR", "IT"],
            "salary": [80000, 70000, 90000, 75000, 85000]
        })

        # Group by single column
        df.group_by(col("department")).count().show()
        # Output:
        # +----------+-----+
        # |department|count|
        # +----------+-----+
        # |        IT|    3|
        # |        HR|    2|
        # +----------+-----+
        ```

    Example: Group by multiple columns
        ```python
        # Group by multiple columns
        df.group_by(col("department"), col("location")).agg({"salary": "avg"}).show()
        # Output:
        # +----------+--------+-----------+
        # |department|location|avg(salary)|
        # +----------+--------+-----------+
        # |        IT|    NYC|    85000.0|
        # |        HR|    NYC|    72500.0|
        # +----------+--------+-----------+
        ```

    Example: Group by expression
        ```python
        # Group by expression
        df.group_by(col("age").cast("int").alias("age_group")).count().show()
        # Output:
        # +---------+-----+
        # |age_group|count|
        # +---------+-----+
        # |       20|    2|
        # |       30|    3|
        # |       40|    1|
        # +---------+-----+
        ```
    """
    return GroupedData(self, list(cols) if cols else None)

join

join(other: DataFrame, on: Union[str, List[str]], *, how: JoinType = 'inner') -> DataFrame
join(other: DataFrame, *, left_on: Union[ColumnOrName, List[ColumnOrName]], right_on: Union[ColumnOrName, List[ColumnOrName]], how: JoinType = 'inner') -> DataFrame
join(other: DataFrame, on: Optional[Union[str, List[str]]] = None, *, left_on: Optional[Union[ColumnOrName, List[ColumnOrName]]] = None, right_on: Optional[Union[ColumnOrName, List[ColumnOrName]]] = None, how: JoinType = 'inner') -> DataFrame

Joins this DataFrame with another DataFrame.

The Dataframes must have no duplicate column names between them. This API only supports equi-joins. For non-equi-joins, use session.sql().

Parameters:

  • other (DataFrame) –

    DataFrame to join with.

  • on (Optional[Union[str, List[str]]], default: None ) –

    Join condition(s). Can be: - A column name (str) - A list of column names (List[str]) - A Column expression (e.g., col('a')) - A list of Column expressions - None for cross joins

  • left_on (Optional[Union[ColumnOrName, List[ColumnOrName]]], default: None ) –

    Column(s) from the left DataFrame to join on. Can be: - A column name (str) - A Column expression (e.g., col('a'), col('a') + 1) - A list of column names or expressions

  • right_on (Optional[Union[ColumnOrName, List[ColumnOrName]]], default: None ) –

    Column(s) from the right DataFrame to join on. Can be: - A column name (str) - A Column expression (e.g., col('b'), upper(col('b'))) - A list of column names or expressions

  • how (JoinType, default: 'inner' ) –

    Type of join to perform.

Returns:

Raises:

Inner join on column name
# Create sample DataFrames
df1 = session.create_dataframe({
    "id": [1, 2, 3],
    "name": ["Alice", "Bob", "Charlie"]
})
df2 = session.create_dataframe({
    "id": [1, 2, 4],
    "age": [25, 30, 35]
})

# Join on single column
df1.join(df2, on=col("id")).show()
# Output:
# +---+-----+---+
# | id| name|age|
# +---+-----+---+
# |  1|Alice| 25|
# |  2|  Bob| 30|
# +---+-----+---+
Join with expression
# Join with Column expressions
df1.join(
    df2,
    left_on=col("id"),
    right_on=col("id"),
).show()
# Output:
# +---+-----+---+
# | id| name|age|
# +---+-----+---+
# |  1|Alice| 25|
# |  2|  Bob| 30|
# +---+-----+---+
Cross join
# Cross join (cartesian product)
df1.join(df2, how="cross").show()
# Output:
# +---+-----+---+---+
# | id| name| id|age|
# +---+-----+---+---+
# |  1|Alice|  1| 25|
# |  1|Alice|  2| 30|
# |  1|Alice|  4| 35|
# |  2|  Bob|  1| 25|
# |  2|  Bob|  2| 30|
# |  2|  Bob|  4| 35|
# |  3|Charlie| 1| 25|
# |  3|Charlie| 2| 30|
# |  3|Charlie| 4| 35|
# +---+-----+---+---+
Source code in src/fenic/api/dataframe/dataframe.py
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
def join(
    self,
    other: DataFrame,
    on: Optional[Union[str, List[str]]] = None,
    *,
    left_on: Optional[Union[ColumnOrName, List[ColumnOrName]]] = None,
    right_on: Optional[Union[ColumnOrName, List[ColumnOrName]]] = None,
    how: JoinType = "inner",
) -> DataFrame:
    """Joins this DataFrame with another DataFrame.

    The Dataframes must have no duplicate column names between them. This API only supports equi-joins.
    For non-equi-joins, use session.sql().

    Args:
        other: DataFrame to join with.
        on: Join condition(s). Can be:
            - A column name (str)
            - A list of column names (List[str])
            - A Column expression (e.g., col('a'))
            - A list of Column expressions
            - `None` for cross joins
        left_on: Column(s) from the left DataFrame to join on. Can be:
            - A column name (str)
            - A Column expression (e.g., col('a'), col('a') + 1)
            - A list of column names or expressions
        right_on: Column(s) from the right DataFrame to join on. Can be:
            - A column name (str)
            - A Column expression (e.g., col('b'), upper(col('b')))
            - A list of column names or expressions
        how: Type of join to perform.

    Returns:
        Joined DataFrame.

    Raises:
        ValidationError: If cross join is used with an ON clause.
        ValidationError: If join condition is invalid.
        ValidationError: If both 'on' and 'left_on'/'right_on' parameters are provided.
        ValidationError: If only one of 'left_on' or 'right_on' is provided.
        ValidationError: If 'left_on' and 'right_on' have different lengths

    Example: Inner join on column name
        ```python
        # Create sample DataFrames
        df1 = session.create_dataframe({
            "id": [1, 2, 3],
            "name": ["Alice", "Bob", "Charlie"]
        })
        df2 = session.create_dataframe({
            "id": [1, 2, 4],
            "age": [25, 30, 35]
        })

        # Join on single column
        df1.join(df2, on=col("id")).show()
        # Output:
        # +---+-----+---+
        # | id| name|age|
        # +---+-----+---+
        # |  1|Alice| 25|
        # |  2|  Bob| 30|
        # +---+-----+---+
        ```

    Example: Join with expression
        ```python
        # Join with Column expressions
        df1.join(
            df2,
            left_on=col("id"),
            right_on=col("id"),
        ).show()
        # Output:
        # +---+-----+---+
        # | id| name|age|
        # +---+-----+---+
        # |  1|Alice| 25|
        # |  2|  Bob| 30|
        # +---+-----+---+
        ```

    Example: Cross join
        ```python
        # Cross join (cartesian product)
        df1.join(df2, how="cross").show()
        # Output:
        # +---+-----+---+---+
        # | id| name| id|age|
        # +---+-----+---+---+
        # |  1|Alice|  1| 25|
        # |  1|Alice|  2| 30|
        # |  1|Alice|  4| 35|
        # |  2|  Bob|  1| 25|
        # |  2|  Bob|  2| 30|
        # |  2|  Bob|  4| 35|
        # |  3|Charlie| 1| 25|
        # |  3|Charlie| 2| 30|
        # |  3|Charlie| 4| 35|
        # +---+-----+---+---+
        ```
    """
    validate_join_parameters(self, on, left_on, right_on, how)

    # Build join conditions
    left_conditions, right_conditions = build_join_conditions(on, left_on, right_on)

    return self._from_logical_plan(
        Join(self._logical_plan, other._logical_plan, left_conditions, right_conditions, how),
    )

limit

limit(n: int) -> DataFrame

Limits the number of rows to the specified number.

Parameters:

  • n (int) –

    Maximum number of rows to return.

Returns:

  • DataFrame ( DataFrame ) –

    DataFrame with at most n rows.

Raises:

  • TypeError

    If n is not an integer.

Limit rows
# Create sample DataFrame
df = session.create_dataframe({
    "id": [1, 2, 3, 4, 5],
    "name": ["Alice", "Bob", "Charlie", "Dave", "Eve"]
})

# Get first 3 rows
df.limit(3).show()
# Output:
# +---+-------+
# | id|   name|
# +---+-------+
# |  1|  Alice|
# |  2|    Bob|
# |  3|Charlie|
# +---+-------+
Limit with other operations
# Limit after filtering
df.filter(col("id") > 2).limit(2).show()
# Output:
# +---+-------+
# | id|   name|
# +---+-------+
# |  3|Charlie|
# |  4|   Dave|
# +---+-------+
Source code in src/fenic/api/dataframe/dataframe.py
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
def limit(self, n: int) -> DataFrame:
    """Limits the number of rows to the specified number.

    Args:
        n: Maximum number of rows to return.

    Returns:
        DataFrame: DataFrame with at most n rows.

    Raises:
        TypeError: If n is not an integer.

    Example: Limit rows
        ```python
        # Create sample DataFrame
        df = session.create_dataframe({
            "id": [1, 2, 3, 4, 5],
            "name": ["Alice", "Bob", "Charlie", "Dave", "Eve"]
        })

        # Get first 3 rows
        df.limit(3).show()
        # Output:
        # +---+-------+
        # | id|   name|
        # +---+-------+
        # |  1|  Alice|
        # |  2|    Bob|
        # |  3|Charlie|
        # +---+-------+
        ```

    Example: Limit with other operations
        ```python
        # Limit after filtering
        df.filter(col("id") > 2).limit(2).show()
        # Output:
        # +---+-------+
        # | id|   name|
        # +---+-------+
        # |  3|Charlie|
        # |  4|   Dave|
        # +---+-------+
        ```
    """
    return self._from_logical_plan(Limit(self._logical_plan, n))

lineage

lineage() -> Lineage

Create a Lineage object to trace data through transformations.

The Lineage interface allows you to trace how specific rows are transformed through your DataFrame operations, both forwards and backwards through the computation graph.

Returns:

  • Lineage ( Lineage ) –

    Interface for querying data lineage

Example
# Create lineage query
lineage = df.lineage()

# Trace specific rows backwards through transformations
source_rows = lineage.backward(["result_uuid1", "result_uuid2"])

# Or trace forwards to see outputs
result_rows = lineage.forward(["source_uuid1"])
See Also

LineageQuery: Full documentation of lineage querying capabilities

Source code in src/fenic/api/dataframe/dataframe.py
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
def lineage(self) -> Lineage:
    """Create a Lineage object to trace data through transformations.

    The Lineage interface allows you to trace how specific rows are transformed
    through your DataFrame operations, both forwards and backwards through the
    computation graph.

    Returns:
        Lineage: Interface for querying data lineage

    Example:
        ```python
        # Create lineage query
        lineage = df.lineage()

        # Trace specific rows backwards through transformations
        source_rows = lineage.backward(["result_uuid1", "result_uuid2"])

        # Or trace forwards to see outputs
        result_rows = lineage.forward(["source_uuid1"])
        ```

    See Also:
        LineageQuery: Full documentation of lineage querying capabilities
    """
    return Lineage(self._logical_plan.session_state.execution.build_lineage(self._logical_plan))

order_by

order_by(cols: Union[ColumnOrName, List[ColumnOrName], None] = None, ascending: Optional[Union[bool, List[bool]]] = None) -> 'DataFrame'

Sort the DataFrame by the specified columns. Alias for sort().

Returns:

  • DataFrame ( 'DataFrame' ) –

    sorted Dataframe.

See Also

sort(): Full documentation of sorting behavior and parameters.

Source code in src/fenic/api/dataframe/dataframe.py
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
def order_by(
    self,
    cols: Union[ColumnOrName, List[ColumnOrName], None] = None,
    ascending: Optional[Union[bool, List[bool]]] = None,
) -> "DataFrame":
    """Sort the DataFrame by the specified columns. Alias for sort().

    Returns:
        DataFrame: sorted Dataframe.

    See Also:
        sort(): Full documentation of sorting behavior and parameters.
    """
    return self.sort(cols, ascending)

persist

persist() -> DataFrame

Mark this DataFrame to be persisted after first computation.

The persisted DataFrame will be cached after its first computation, avoiding recomputation in subsequent operations. This is useful for DataFrames that are reused multiple times in your workflow.

Returns:

  • DataFrame ( DataFrame ) –

    Same DataFrame, but marked for persistence

Example
# Cache intermediate results for reuse
filtered_df = (df
    .filter(col("age") > 25)
    .persist()  # Cache these results
)

# Both operations will use cached results
result1 = filtered_df.group_by("department").count()
result2 = filtered_df.select("name", "salary")
Source code in src/fenic/api/dataframe/dataframe.py
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
def persist(self) -> DataFrame:
    """Mark this DataFrame to be persisted after first computation.

    The persisted DataFrame will be cached after its first computation,
    avoiding recomputation in subsequent operations. This is useful for DataFrames
    that are reused multiple times in your workflow.

    Returns:
        DataFrame: Same DataFrame, but marked for persistence

    Example:
        ```python
        # Cache intermediate results for reuse
        filtered_df = (df
            .filter(col("age") > 25)
            .persist()  # Cache these results
        )

        # Both operations will use cached results
        result1 = filtered_df.group_by("department").count()
        result2 = filtered_df.select("name", "salary")
        ```
    """
    table_name = f"cache_{uuid.uuid4().hex}"
    cache_info = CacheInfo(duckdb_table_name=table_name)
    self._logical_plan.set_cache_info(cache_info)
    return self._from_logical_plan(self._logical_plan)

select

select(*cols: ColumnOrName) -> DataFrame

Projects a set of Column expressions or column names.

Parameters:

  • *cols (ColumnOrName, default: () ) –

    Column expressions to select. Can be: - String column names (e.g., "id", "name") - Column objects (e.g., col("id"), col("age") + 1)

Returns:

  • DataFrame ( DataFrame ) –

    A new DataFrame with selected columns

Select by column names
# Create a DataFrame
df = session.create_dataframe({"name": ["Alice", "Bob"], "age": [25, 30]})

# Select by column names
df.select(col("name"), col("age")).show()
# Output:
# +-----+---+
# | name|age|
# +-----+---+
# |Alice| 25|
# |  Bob| 30|
# +-----+---+
Select with expressions
# Select with expressions
df.select(col("name"), col("age") + 1).show()
# Output:
# +-----+-------+
# | name|age + 1|
# +-----+-------+
# |Alice|     26|
# |  Bob|     31|
# +-----+-------+
Mix strings and expressions
# Mix strings and expressions
df.select(col("name"), col("age") * 2).show()
# Output:
# +-----+-------+
# | name|age * 2|
# +-----+-------+
# |Alice|     50|
# |  Bob|     60|
# +-----+-------+
Source code in src/fenic/api/dataframe/dataframe.py
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
def select(self, *cols: ColumnOrName) -> DataFrame:
    """Projects a set of Column expressions or column names.

    Args:
        *cols: Column expressions to select. Can be:
            - String column names (e.g., "id", "name")
            - Column objects (e.g., col("id"), col("age") + 1)

    Returns:
        DataFrame: A new DataFrame with selected columns

    Example: Select by column names
        ```python
        # Create a DataFrame
        df = session.create_dataframe({"name": ["Alice", "Bob"], "age": [25, 30]})

        # Select by column names
        df.select(col("name"), col("age")).show()
        # Output:
        # +-----+---+
        # | name|age|
        # +-----+---+
        # |Alice| 25|
        # |  Bob| 30|
        # +-----+---+
        ```

    Example: Select with expressions
        ```python
        # Select with expressions
        df.select(col("name"), col("age") + 1).show()
        # Output:
        # +-----+-------+
        # | name|age + 1|
        # +-----+-------+
        # |Alice|     26|
        # |  Bob|     31|
        # +-----+-------+
        ```

    Example: Mix strings and expressions
        ```python
        # Mix strings and expressions
        df.select(col("name"), col("age") * 2).show()
        # Output:
        # +-----+-------+
        # | name|age * 2|
        # +-----+-------+
        # |Alice|     50|
        # |  Bob|     60|
        # +-----+-------+
        ```
    """
    exprs = []
    if not cols:
        return self
    for c in cols:
        if isinstance(c, str):
            if c == "*":
                exprs.extend(col(field)._logical_expr for field in self.columns)
            else:
                exprs.append(col(c)._logical_expr)
        else:
            exprs.append(c._logical_expr)

    return self._from_logical_plan(
        Projection(self._logical_plan, exprs)
    )

show

show(n: int = 10, explain_analyze: bool = False) -> None

Display the DataFrame content in a tabular form.

This is an action that triggers computation of the DataFrame. The output is printed to stdout in a formatted table.

Parameters:

  • n (int, default: 10 ) –

    Number of rows to display

  • explain_analyze (bool, default: False ) –

    Whether to print the explain analyze plan

Source code in src/fenic/api/dataframe/dataframe.py
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
def show(self, n: int = 10, explain_analyze: bool = False) -> None:
    """Display the DataFrame content in a tabular form.

    This is an action that triggers computation of the DataFrame.
    The output is printed to stdout in a formatted table.

    Args:
        n: Number of rows to display
        explain_analyze: Whether to print the explain analyze plan
    """
    output, metrics = self._logical_plan.session_state.execution.show(self._logical_plan, n)
    logger.info(metrics.get_summary())
    print(output)
    if explain_analyze:
        print(metrics.get_execution_plan_details())

sort

sort(cols: Union[ColumnOrName, List[ColumnOrName], None] = None, ascending: Optional[Union[bool, List[bool]]] = None) -> DataFrame

Sort the DataFrame by the specified columns.

Parameters:

  • cols (Union[ColumnOrName, List[ColumnOrName], None], default: None ) –

    Columns to sort by. This can be: - A single column name (str) - A Column expression (e.g., col("name")) - A list of column names or Column expressions - Column expressions may include sorting directives such as asc("col"), desc("col"), asc_nulls_last("col"), etc. - If no columns are provided, the operation is a no-op.

  • ascending (Optional[Union[bool, List[bool]]], default: None ) –

    A boolean or list of booleans indicating sort order. - If True, sorts in ascending order; if False, descending. - If a list is provided, its length must match the number of columns. - Cannot be used if any of the columns use asc()/desc() expressions. - If not specified and no sort expressions are used, columns will be sorted in ascending order by default.

Returns:

  • DataFrame ( DataFrame ) –

    A new DataFrame sorted by the specified columns.

Raises:

  • ValueError
    • If ascending is provided and its length does not match cols
    • If both ascending and column expressions like asc()/desc() are used
  • TypeError
    • If cols is not a column name, Column, or list of column names/Columns
    • If ascending is not a boolean or list of booleans
Sort in ascending order
# Create sample DataFrame
df = session.create_dataframe([(2, "Alice"), (5, "Bob")], schema=["age", "name"])

# Sort by age in ascending order
df.sort(asc(col("age"))).show()
# Output:
# +---+-----+
# |age| name|
# +---+-----+
# |  2|Alice|
# |  5|  Bob|
# +---+-----+
Sort in descending order
# Sort by age in descending order
df.sort(col("age").desc()).show()
# Output:
# +---+-----+
# |age| name|
# +---+-----+
# |  5|  Bob|
# |  2|Alice|
# +---+-----+
Sort with boolean ascending parameter
# Sort by age in descending order using boolean
df.sort(col("age"), ascending=False).show()
# Output:
# +---+-----+
# |age| name|
# +---+-----+
# |  5|  Bob|
# |  2|Alice|
# +---+-----+
Multiple columns with different sort orders
# Create sample DataFrame
df = session.create_dataframe([(2, "Alice"), (2, "Bob"), (5, "Bob")], schema=["age", "name"])

# Sort by age descending, then name ascending
df.sort(desc(col("age")), col("name")).show()
# Output:
# +---+-----+
# |age| name|
# +---+-----+
# |  5|  Bob|
# |  2|Alice|
# |  2|  Bob|
# +---+-----+
Multiple columns with list of ascending strategies
# Sort both columns in descending order
df.sort([col("age"), col("name")], ascending=[False, False]).show()
# Output:
# +---+-----+
# |age| name|
# +---+-----+
# |  5|  Bob|
# |  2|  Bob|
# |  2|Alice|
# +---+-----+
Source code in src/fenic/api/dataframe/dataframe.py
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
def sort(
    self,
    cols: Union[ColumnOrName, List[ColumnOrName], None] = None,
    ascending: Optional[Union[bool, List[bool]]] = None,
) -> DataFrame:
    """Sort the DataFrame by the specified columns.

    Args:
        cols: Columns to sort by. This can be:
            - A single column name (str)
            - A Column expression (e.g., `col("name")`)
            - A list of column names or Column expressions
            - Column expressions may include sorting directives such as `asc("col")`, `desc("col")`,
            `asc_nulls_last("col")`, etc.
            - If no columns are provided, the operation is a no-op.

        ascending: A boolean or list of booleans indicating sort order.
            - If `True`, sorts in ascending order; if `False`, descending.
            - If a list is provided, its length must match the number of columns.
            - Cannot be used if any of the columns use `asc()`/`desc()` expressions.
            - If not specified and no sort expressions are used, columns will be sorted in ascending order by default.

    Returns:
        DataFrame: A new DataFrame sorted by the specified columns.

    Raises:
        ValueError:
            - If `ascending` is provided and its length does not match `cols`
            - If both `ascending` and column expressions like `asc()`/`desc()` are used
        TypeError:
            - If `cols` is not a column name, Column, or list of column names/Columns
            - If `ascending` is not a boolean or list of booleans

    Example: Sort in ascending order
        ```python
        # Create sample DataFrame
        df = session.create_dataframe([(2, "Alice"), (5, "Bob")], schema=["age", "name"])

        # Sort by age in ascending order
        df.sort(asc(col("age"))).show()
        # Output:
        # +---+-----+
        # |age| name|
        # +---+-----+
        # |  2|Alice|
        # |  5|  Bob|
        # +---+-----+
        ```

    Example: Sort in descending order
        ```python
        # Sort by age in descending order
        df.sort(col("age").desc()).show()
        # Output:
        # +---+-----+
        # |age| name|
        # +---+-----+
        # |  5|  Bob|
        # |  2|Alice|
        # +---+-----+
        ```

    Example: Sort with boolean ascending parameter
        ```python
        # Sort by age in descending order using boolean
        df.sort(col("age"), ascending=False).show()
        # Output:
        # +---+-----+
        # |age| name|
        # +---+-----+
        # |  5|  Bob|
        # |  2|Alice|
        # +---+-----+
        ```

    Example: Multiple columns with different sort orders
        ```python
        # Create sample DataFrame
        df = session.create_dataframe([(2, "Alice"), (2, "Bob"), (5, "Bob")], schema=["age", "name"])

        # Sort by age descending, then name ascending
        df.sort(desc(col("age")), col("name")).show()
        # Output:
        # +---+-----+
        # |age| name|
        # +---+-----+
        # |  5|  Bob|
        # |  2|Alice|
        # |  2|  Bob|
        # +---+-----+
        ```

    Example: Multiple columns with list of ascending strategies
        ```python
        # Sort both columns in descending order
        df.sort([col("age"), col("name")], ascending=[False, False]).show()
        # Output:
        # +---+-----+
        # |age| name|
        # +---+-----+
        # |  5|  Bob|
        # |  2|  Bob|
        # |  2|Alice|
        # +---+-----+
        ```
    """
    col_args = cols
    if cols is None:
        return self._from_logical_plan(
            Sort(self._logical_plan, [])
        )
    elif not isinstance(cols, List):
        col_args = [cols]

    # parse the ascending arguments
    bool_ascending = []
    using_default_ascending = False
    if ascending is None:
        using_default_ascending = True
        bool_ascending = [True] * len(col_args)
    elif isinstance(ascending, bool):
        bool_ascending = [ascending] * len(col_args)
    elif isinstance(ascending, List):
        bool_ascending = ascending
        if len(bool_ascending) != len(cols):
            raise ValueError(
                f"the list length of ascending sort strategies must match the specified sort columns"
                f"Got {len(cols)} column expressions and {len(bool_ascending)} ascending strategies. "
            )
    else:
        raise TypeError(
            f"Invalid ascending strategy type: {type(ascending)}.  Must be a boolean or list of booleans."
        )

    # create our list of sort expressions, for each column expression
    # that isn't already provided as a asc()/desc() SortExpr
    sort_exprs = []
    for c, asc_bool in zip(col_args, bool_ascending, strict=True):
        if isinstance(c, ColumnOrName):
            c_expr = Column._from_col_or_name(c)._logical_expr
        else:
            raise TypeError(
                f"Invalid column type: {type(c).__name__}.  Must be a string or Column Expression."
            )
        if not isinstance(asc_bool, bool):
            raise TypeError(
                f"Invalid ascending strategy type: {type(asc_bool).__name__}.  Must be a boolean."
            )
        if isinstance(c_expr, SortExpr):
            if not using_default_ascending:
                raise TypeError(
                    "Cannot specify both asc()/desc() expressions and boolean ascending strategies."
                    f"Got expression: {c_expr} and ascending argument: {bool_ascending}"
                )
            sort_exprs.append(c_expr)
        else:
            sort_exprs.append(SortExpr(c_expr, ascending=asc_bool))

    return self._from_logical_plan(
        Sort(self._logical_plan, sort_exprs),
    )

to_arrow

to_arrow() -> pa.Table

Execute the DataFrame computation and return an Apache Arrow Table.

This is an action that triggers computation of the DataFrame query plan. All transformations and operations are executed, and the results are materialized into an Apache Arrow Table with columnar memory layout optimized for analytics and zero-copy data exchange.

Returns:

  • Table

    pa.Table: An Apache Arrow Table containing the computed results

Source code in src/fenic/api/dataframe/dataframe.py
295
296
297
298
299
300
301
302
303
304
305
306
def to_arrow(self) -> pa.Table:
    """Execute the DataFrame computation and return an Apache Arrow Table.

    This is an action that triggers computation of the DataFrame query plan.
    All transformations and operations are executed, and the results are
    materialized into an Apache Arrow Table with columnar memory layout
    optimized for analytics and zero-copy data exchange.

    Returns:
        pa.Table: An Apache Arrow Table containing the computed results
    """
    return self.collect("arrow").data

to_pandas

to_pandas() -> pd.DataFrame

Execute the DataFrame computation and return a Pandas DataFrame.

This is an action that triggers computation of the DataFrame query plan. All transformations and operations are executed, and the results are materialized into a Pandas DataFrame.

Returns:

  • DataFrame

    pd.DataFrame: A Pandas DataFrame containing the computed results with

Source code in src/fenic/api/dataframe/dataframe.py
283
284
285
286
287
288
289
290
291
292
293
def to_pandas(self) -> pd.DataFrame:
    """Execute the DataFrame computation and return a Pandas DataFrame.

    This is an action that triggers computation of the DataFrame query plan.
    All transformations and operations are executed, and the results are
    materialized into a Pandas DataFrame.

    Returns:
        pd.DataFrame: A Pandas DataFrame containing the computed results with
    """
    return self.collect("pandas").data

to_polars

to_polars() -> pl.DataFrame

Execute the DataFrame computation and return the result as a Polars DataFrame.

This is an action that triggers computation of the DataFrame query plan. All transformations and operations are executed, and the results are materialized into a Polars DataFrame.

Returns:

  • DataFrame

    pl.DataFrame: A Polars DataFrame with materialized results

Source code in src/fenic/api/dataframe/dataframe.py
271
272
273
274
275
276
277
278
279
280
281
def to_polars(self) -> pl.DataFrame:
    """Execute the DataFrame computation and return the result as a Polars DataFrame.

    This is an action that triggers computation of the DataFrame query plan.
    All transformations and operations are executed, and the results are
    materialized into a Polars DataFrame.

    Returns:
        pl.DataFrame: A Polars DataFrame with materialized results
    """
    return self.collect("polars").data

to_pydict

to_pydict() -> Dict[str, List[Any]]

Execute the DataFrame computation and return a dictionary of column arrays.

This is an action that triggers computation of the DataFrame query plan. All transformations and operations are executed, and the results are materialized into a Python dictionary where each column becomes a list of values.

Returns:

  • Dict[str, List[Any]]

    Dict[str, List[Any]]: A dictionary containing the computed results with: - Keys: Column names as strings - Values: Lists containing all values for each column

Source code in src/fenic/api/dataframe/dataframe.py
308
309
310
311
312
313
314
315
316
317
318
319
320
def to_pydict(self) -> Dict[str, List[Any]]:
    """Execute the DataFrame computation and return a dictionary of column arrays.

    This is an action that triggers computation of the DataFrame query plan.
    All transformations and operations are executed, and the results are
    materialized into a Python dictionary where each column becomes a list of values.

    Returns:
        Dict[str, List[Any]]: A dictionary containing the computed results with:
            - Keys: Column names as strings
            - Values: Lists containing all values for each column
    """
    return self.collect("pydict").data

to_pylist

to_pylist() -> List[Dict[str, Any]]

Execute the DataFrame computation and return a list of row dictionaries.

This is an action that triggers computation of the DataFrame query plan. All transformations and operations are executed, and the results are materialized into a Python list where each element is a dictionary representing one row with column names as keys.

Returns:

  • List[Dict[str, Any]]

    List[Dict[str, Any]]: A list containing the computed results with: - Each element: A dictionary representing one row - Dictionary keys: Column names as strings - Dictionary values: Cell values in Python native types - List length equals number of rows in the result

Source code in src/fenic/api/dataframe/dataframe.py
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
def to_pylist(self) -> List[Dict[str, Any]]:
    """Execute the DataFrame computation and return a list of row dictionaries.

    This is an action that triggers computation of the DataFrame query plan.
    All transformations and operations are executed, and the results are
    materialized into a Python list where each element is a dictionary
    representing one row with column names as keys.

    Returns:
        List[Dict[str, Any]]: A list containing the computed results with:
            - Each element: A dictionary representing one row
            - Dictionary keys: Column names as strings
            - Dictionary values: Cell values in Python native types
            - List length equals number of rows in the result
    """
    return self.collect("pylist").data

union

union(other: DataFrame) -> DataFrame

Return a new DataFrame containing the union of rows in this and another DataFrame.

This is equivalent to UNION ALL in SQL. To remove duplicates, use drop_duplicates() after union().

Parameters:

  • other (DataFrame) –

    Another DataFrame with the same schema.

Returns:

  • DataFrame ( DataFrame ) –

    A new DataFrame containing rows from both DataFrames.

Raises:

  • ValueError

    If the DataFrames have different schemas.

  • TypeError

    If other is not a DataFrame.

Union two DataFrames
# Create two DataFrames
df1 = session.create_dataframe({
    "id": [1, 2],
    "value": ["a", "b"]
})
df2 = session.create_dataframe({
    "id": [3, 4],
    "value": ["c", "d"]
})

# Union the DataFrames
df1.union(df2).show()
# Output:
# +---+-----+
# | id|value|
# +---+-----+
# |  1|    a|
# |  2|    b|
# |  3|    c|
# |  4|    d|
# +---+-----+
Union with duplicates
# Create DataFrames with overlapping data
df1 = session.create_dataframe({
    "id": [1, 2],
    "value": ["a", "b"]
})
df2 = session.create_dataframe({
    "id": [2, 3],
    "value": ["b", "c"]
})

# Union with duplicates
df1.union(df2).show()
# Output:
# +---+-----+
# | id|value|
# +---+-----+
# |  1|    a|
# |  2|    b|
# |  2|    b|
# |  3|    c|
# +---+-----+

# Remove duplicates after union
df1.union(df2).drop_duplicates().show()
# Output:
# +---+-----+
# | id|value|
# +---+-----+
# |  1|    a|
# |  2|    b|
# |  3|    c|
# +---+-----+
Source code in src/fenic/api/dataframe/dataframe.py
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
def union(self, other: DataFrame) -> DataFrame:
    """Return a new DataFrame containing the union of rows in this and another DataFrame.

    This is equivalent to UNION ALL in SQL. To remove duplicates, use drop_duplicates() after union().

    Args:
        other: Another DataFrame with the same schema.

    Returns:
        DataFrame: A new DataFrame containing rows from both DataFrames.

    Raises:
        ValueError: If the DataFrames have different schemas.
        TypeError: If other is not a DataFrame.

    Example: Union two DataFrames
        ```python
        # Create two DataFrames
        df1 = session.create_dataframe({
            "id": [1, 2],
            "value": ["a", "b"]
        })
        df2 = session.create_dataframe({
            "id": [3, 4],
            "value": ["c", "d"]
        })

        # Union the DataFrames
        df1.union(df2).show()
        # Output:
        # +---+-----+
        # | id|value|
        # +---+-----+
        # |  1|    a|
        # |  2|    b|
        # |  3|    c|
        # |  4|    d|
        # +---+-----+
        ```

    Example: Union with duplicates
        ```python
        # Create DataFrames with overlapping data
        df1 = session.create_dataframe({
            "id": [1, 2],
            "value": ["a", "b"]
        })
        df2 = session.create_dataframe({
            "id": [2, 3],
            "value": ["b", "c"]
        })

        # Union with duplicates
        df1.union(df2).show()
        # Output:
        # +---+-----+
        # | id|value|
        # +---+-----+
        # |  1|    a|
        # |  2|    b|
        # |  2|    b|
        # |  3|    c|
        # +---+-----+

        # Remove duplicates after union
        df1.union(df2).drop_duplicates().show()
        # Output:
        # +---+-----+
        # | id|value|
        # +---+-----+
        # |  1|    a|
        # |  2|    b|
        # |  3|    c|
        # +---+-----+
        ```
    """
    return self._from_logical_plan(
        UnionLogicalPlan([self._logical_plan, other._logical_plan]),
    )

unnest

unnest(*col_names: str) -> DataFrame

Unnest the specified struct columns into separate columns.

This operation flattens nested struct data by expanding each field of a struct into its own top-level column.

For each specified column containing a struct: 1. Each field in the struct becomes a separate column. 2. New columns are named after the corresponding struct fields. 3. The new columns are inserted into the DataFrame in place of the original struct column. 4. The overall column order is preserved.

Parameters:

  • *col_names (str, default: () ) –

    One or more struct columns to unnest. Each can be a string (column name) or a Column expression.

Returns:

  • DataFrame ( DataFrame ) –

    A new DataFrame with the specified struct columns expanded.

Raises:

  • TypeError

    If any argument is not a string or Column.

  • ValueError

    If a specified column does not contain struct data.

Unnest struct column
# Create sample DataFrame
df = session.create_dataframe({
    "id": [1, 2],
    "tags": [{"red": 1, "blue": 2}, {"red": 3}],
    "name": ["Alice", "Bob"]
})

# Unnest the tags column
df.unnest(col("tags")).show()
# Output:
# +---+---+----+-----+
# | id| red|blue| name|
# +---+---+----+-----+
# |  1|  1|   2|Alice|
# |  2|  3|null|  Bob|
# +---+---+----+-----+
Unnest multiple struct columns
# Create sample DataFrame with multiple struct columns
df = session.create_dataframe({
    "id": [1, 2],
    "tags": [{"red": 1, "blue": 2}, {"red": 3}],
    "info": [{"age": 25, "city": "NY"}, {"age": 30, "city": "LA"}],
    "name": ["Alice", "Bob"]
})

# Unnest multiple struct columns
df.unnest(col("tags"), col("info")).show()
# Output:
# +---+---+----+---+----+-----+
# | id| red|blue|age|city| name|
# +---+---+----+---+----+-----+
# |  1|  1|   2| 25|  NY|Alice|
# |  2|  3|null| 30|  LA|  Bob|
# +---+---+----+---+----+-----+
Source code in src/fenic/api/dataframe/dataframe.py
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
def unnest(self, *col_names: str) -> DataFrame:
    """Unnest the specified struct columns into separate columns.

    This operation flattens nested struct data by expanding each field of a struct
    into its own top-level column.

    For each specified column containing a struct:
    1. Each field in the struct becomes a separate column.
    2. New columns are named after the corresponding struct fields.
    3. The new columns are inserted into the DataFrame in place of the original struct column.
    4. The overall column order is preserved.

    Args:
        *col_names: One or more struct columns to unnest. Each can be a string (column name)
            or a Column expression.

    Returns:
        DataFrame: A new DataFrame with the specified struct columns expanded.

    Raises:
        TypeError: If any argument is not a string or Column.
        ValueError: If a specified column does not contain struct data.

    Example: Unnest struct column
        ```python
        # Create sample DataFrame
        df = session.create_dataframe({
            "id": [1, 2],
            "tags": [{"red": 1, "blue": 2}, {"red": 3}],
            "name": ["Alice", "Bob"]
        })

        # Unnest the tags column
        df.unnest(col("tags")).show()
        # Output:
        # +---+---+----+-----+
        # | id| red|blue| name|
        # +---+---+----+-----+
        # |  1|  1|   2|Alice|
        # |  2|  3|null|  Bob|
        # +---+---+----+-----+
        ```

    Example: Unnest multiple struct columns
        ```python
        # Create sample DataFrame with multiple struct columns
        df = session.create_dataframe({
            "id": [1, 2],
            "tags": [{"red": 1, "blue": 2}, {"red": 3}],
            "info": [{"age": 25, "city": "NY"}, {"age": 30, "city": "LA"}],
            "name": ["Alice", "Bob"]
        })

        # Unnest multiple struct columns
        df.unnest(col("tags"), col("info")).show()
        # Output:
        # +---+---+----+---+----+-----+
        # | id| red|blue|age|city| name|
        # +---+---+----+---+----+-----+
        # |  1|  1|   2| 25|  NY|Alice|
        # |  2|  3|null| 30|  LA|  Bob|
        # +---+---+----+---+----+-----+
        ```
    """
    if not col_names:
        return self
    exprs = []
    for c in col_names:
        if c not in self.columns:
            raise TypeError(f"Column {c} not found in DataFrame.")
        exprs.append(col(c)._logical_expr)
    return self._from_logical_plan(
        Unnest(self._logical_plan, exprs),
    )

where

where(condition: Column) -> DataFrame

Filters rows using the given condition (alias for filter()).

Parameters:

  • condition (Column) –

    A Column expression that evaluates to a boolean

Returns:

  • DataFrame ( DataFrame ) –

    Filtered DataFrame

See Also

filter(): Full documentation of filtering behavior

Source code in src/fenic/api/dataframe/dataframe.py
485
486
487
488
489
490
491
492
493
494
495
496
497
def where(self, condition: Column) -> DataFrame:
    """Filters rows using the given condition (alias for filter()).

    Args:
        condition: A Column expression that evaluates to a boolean

    Returns:
        DataFrame: Filtered DataFrame

    See Also:
        filter(): Full documentation of filtering behavior
    """
    return self.filter(condition)

with_column

with_column(col_name: str, col: Union[Any, Column]) -> DataFrame

Add a new column or replace an existing column.

Parameters:

  • col_name (str) –

    Name of the new column

  • col (Union[Any, Column]) –

    Column expression or value to assign to the column. If not a Column, it will be treated as a literal value.

Returns:

  • DataFrame ( DataFrame ) –

    New DataFrame with added/replaced column

Add literal column
# Create a DataFrame
df = session.create_dataframe({"name": ["Alice", "Bob"], "age": [25, 30]})

# Add literal column
df.with_column("constant", lit(1)).show()
# Output:
# +-----+---+--------+
# | name|age|constant|
# +-----+---+--------+
# |Alice| 25|       1|
# |  Bob| 30|       1|
# +-----+---+--------+
Add computed column
# Add computed column
df.with_column("double_age", col("age") * 2).show()
# Output:
# +-----+---+----------+
# | name|age|double_age|
# +-----+---+----------+
# |Alice| 25|        50|
# |  Bob| 30|        60|
# +-----+---+----------+
Replace existing column
# Replace existing column
df.with_column("age", col("age") + 1).show()
# Output:
# +-----+---+
# | name|age|
# +-----+---+
# |Alice| 26|
# |  Bob| 31|
# +-----+---+
Add column with complex expression
# Add column with complex expression
df.with_column(
    "age_category",
    when(col("age") < 30, "young")
    .when(col("age") < 50, "middle")
    .otherwise("senior")
).show()
# Output:
# +-----+---+------------+
# | name|age|age_category|
# +-----+---+------------+
# |Alice| 25|       young|
# |  Bob| 30|     middle|
# +-----+---+------------+
Source code in src/fenic/api/dataframe/dataframe.py
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
def with_column(self, col_name: str, col: Union[Any, Column]) -> DataFrame:
    """Add a new column or replace an existing column.

    Args:
        col_name: Name of the new column
        col: Column expression or value to assign to the column. If not a Column,
            it will be treated as a literal value.

    Returns:
        DataFrame: New DataFrame with added/replaced column

    Example: Add literal column
        ```python
        # Create a DataFrame
        df = session.create_dataframe({"name": ["Alice", "Bob"], "age": [25, 30]})

        # Add literal column
        df.with_column("constant", lit(1)).show()
        # Output:
        # +-----+---+--------+
        # | name|age|constant|
        # +-----+---+--------+
        # |Alice| 25|       1|
        # |  Bob| 30|       1|
        # +-----+---+--------+
        ```

    Example: Add computed column
        ```python
        # Add computed column
        df.with_column("double_age", col("age") * 2).show()
        # Output:
        # +-----+---+----------+
        # | name|age|double_age|
        # +-----+---+----------+
        # |Alice| 25|        50|
        # |  Bob| 30|        60|
        # +-----+---+----------+
        ```

    Example: Replace existing column
        ```python
        # Replace existing column
        df.with_column("age", col("age") + 1).show()
        # Output:
        # +-----+---+
        # | name|age|
        # +-----+---+
        # |Alice| 26|
        # |  Bob| 31|
        # +-----+---+
        ```

    Example: Add column with complex expression
        ```python
        # Add column with complex expression
        df.with_column(
            "age_category",
            when(col("age") < 30, "young")
            .when(col("age") < 50, "middle")
            .otherwise("senior")
        ).show()
        # Output:
        # +-----+---+------------+
        # | name|age|age_category|
        # +-----+---+------------+
        # |Alice| 25|       young|
        # |  Bob| 30|     middle|
        # +-----+---+------------+
        ```
    """
    exprs = []
    if not isinstance(col, Column):
        col = lit(col)

    for field in self.columns:
        if field != col_name:
            exprs.append(Column._from_column_name(field)._logical_expr)

    # Add the new column with alias
    exprs.append(col.alias(col_name)._logical_expr)

    return self._from_logical_plan(
        Projection(self._logical_plan, exprs)
    )

with_column_renamed

with_column_renamed(col_name: str, new_col_name: str) -> DataFrame

Rename a column. No-op if the column does not exist.

Parameters:

  • col_name (str) –

    Name of the column to rename.

  • new_col_name (str) –

    New name for the column.

Returns:

  • DataFrame ( DataFrame ) –

    New DataFrame with the column renamed.

Rename a column
# Create sample DataFrame
df = session.create_dataframe({
    "age": [25, 30, 35],
    "name": ["Alice", "Bob", "Charlie"]
})

# Rename a column
df.with_column_renamed("age", "age_in_years").show()
# Output:
# +------------+-------+
# |age_in_years|   name|
# +------------+-------+
# |         25|  Alice|
# |         30|    Bob|
# |         35|Charlie|
# +------------+-------+
Rename multiple columns
# Rename multiple columns
df = (df
    .with_column_renamed("age", "age_in_years")
    .with_column_renamed("name", "full_name")
).show()
# Output:
# +------------+----------+
# |age_in_years|full_name |
# +------------+----------+
# |         25|     Alice|
# |         30|       Bob|
# |         35|   Charlie|
# +------------+----------+
Source code in src/fenic/api/dataframe/dataframe.py
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
def with_column_renamed(self, col_name: str, new_col_name: str) -> DataFrame:
    """Rename a column. No-op if the column does not exist.

    Args:
        col_name: Name of the column to rename.
        new_col_name: New name for the column.

    Returns:
        DataFrame: New DataFrame with the column renamed.

    Example: Rename a column
        ```python
        # Create sample DataFrame
        df = session.create_dataframe({
            "age": [25, 30, 35],
            "name": ["Alice", "Bob", "Charlie"]
        })

        # Rename a column
        df.with_column_renamed("age", "age_in_years").show()
        # Output:
        # +------------+-------+
        # |age_in_years|   name|
        # +------------+-------+
        # |         25|  Alice|
        # |         30|    Bob|
        # |         35|Charlie|
        # +------------+-------+
        ```

    Example: Rename multiple columns
        ```python
        # Rename multiple columns
        df = (df
            .with_column_renamed("age", "age_in_years")
            .with_column_renamed("name", "full_name")
        ).show()
        # Output:
        # +------------+----------+
        # |age_in_years|full_name |
        # +------------+----------+
        # |         25|     Alice|
        # |         30|       Bob|
        # |         35|   Charlie|
        # +------------+----------+
        ```
    """
    exprs = []
    renamed = False

    for field in self.schema.column_fields:
        name = field.name
        if name == col_name:
            exprs.append(col(name).alias(new_col_name)._logical_expr)
            renamed = True
        else:
            exprs.append(col(name)._logical_expr)

    if not renamed:
        return self

    return self._from_logical_plan(
        Projection(self._logical_plan, exprs)
    )

DataFrameReader

DataFrameReader(session_state: BaseSessionState)

Interface used to load a DataFrame from external storage systems.

Similar to PySpark's DataFrameReader.

Creates a DataFrameReader.

Parameters:

  • session_state (BaseSessionState) –

    The session state to use for reading

Methods:

  • csv

    Load a DataFrame from one or more CSV files.

  • parquet

    Load a DataFrame from one or more Parquet files.

Source code in src/fenic/api/io/reader.py
25
26
27
28
29
30
31
32
def __init__(self, session_state: BaseSessionState):
    """Creates a DataFrameReader.

    Args:
        session_state: The session state to use for reading
    """
    self._options: Dict[str, Any] = {}
    self._session_state = session_state

csv

csv(paths: Union[str, Path, list[Union[str, Path]]], schema: Optional[Schema] = None, merge_schemas: bool = False) -> DataFrame

Load a DataFrame from one or more CSV files.

Parameters:

  • paths (Union[str, Path, list[Union[str, Path]]]) –

    A single file path, a glob pattern (e.g., "data/*.csv"), or a list of paths.

  • schema (Optional[Schema], default: None ) –

    (optional) A complete schema definition of column names and their types. Only primitive types are supported. - For e.g.: - Schema([ColumnField(name="id", data_type=IntegerType), ColumnField(name="name", data_type=StringType)]) - If provided, all files must match this schema exactly—all column names must be present, and values must be convertible to the specified types. Partial schemas are not allowed.

  • merge_schemas (bool, default: False ) –

    Whether to merge schemas across all files. - If True: Column names are unified across files. Missing columns are filled with nulls. Column types are inferred and widened as needed. - If False (default): Only accepts columns from the first file. Column types from the first file are inferred and applied across all files. If subsequent files do not have the same column name and order as the first file, an error is raised. - The "first file" is defined as: - The first file in lexicographic order (for glob patterns), or - The first file in the provided list (for lists of paths).

Notes
  • The first row in each file is assumed to be a header row.
  • Delimiters (e.g., comma, tab) are automatically inferred.
  • You may specify either schema or merge_schemas=True, but not both.
  • Any date/datetime columns are cast to strings during ingestion.

Raises:

  • ValidationError

    If both schema and merge_schemas=True are provided.

  • ValidationError

    If any path does not end with .csv.

  • PlanError

    If schemas cannot be merged or if there's a schema mismatch when merge_schemas=False.

Read a single CSV file
df = session.read.csv("file.csv")
Read multiple CSV files with schema merging
df = session.read.csv("data/*.csv", merge_schemas=True)
Read CSV files with explicit schema

python df = session.read.csv( ["a.csv", "b.csv"], schema=Schema([ ColumnField(name="id", data_type=IntegerType), ColumnField(name="value", data_type=FloatType) ]) )

Source code in src/fenic/api/io/reader.py
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
def csv(
    self,
    paths: Union[str, Path, list[Union[str, Path]]],
    schema: Optional[Schema] = None,
    merge_schemas: bool = False,
) -> DataFrame:
    """Load a DataFrame from one or more CSV files.

    Args:
        paths: A single file path, a glob pattern (e.g., "data/*.csv"), or a list of paths.
        schema: (optional) A complete schema definition of column names and their types. Only primitive types are supported.
            - For e.g.:
                - Schema([ColumnField(name="id", data_type=IntegerType), ColumnField(name="name", data_type=StringType)])
            - If provided, all files must match this schema exactly—all column names must be present, and values must be
            convertible to the specified types. Partial schemas are not allowed.
        merge_schemas: Whether to merge schemas across all files.
            - If True: Column names are unified across files. Missing columns are filled with nulls. Column types are
            inferred and widened as needed.
            - If False (default): Only accepts columns from the first file. Column types from the first file are
            inferred and applied across all files. If subsequent files do not have the same column name and order as the first file, an error is raised.
            - The "first file" is defined as:
                - The first file in lexicographic order (for glob patterns), or
                - The first file in the provided list (for lists of paths).

    Notes:
        - The first row in each file is assumed to be a header row.
        - Delimiters (e.g., comma, tab) are automatically inferred.
        - You may specify either `schema` or `merge_schemas=True`, but not both.
        - Any date/datetime columns are cast to strings during ingestion.

    Raises:
        ValidationError: If both `schema` and `merge_schemas=True` are provided.
        ValidationError: If any path does not end with `.csv`.
        PlanError: If schemas cannot be merged or if there's a schema mismatch when merge_schemas=False.

    Example: Read a single CSV file
        ```python
        df = session.read.csv("file.csv")
        ```

    Example: Read multiple CSV files with schema merging
        ```python
        df = session.read.csv("data/*.csv", merge_schemas=True)
        ```

    Example: Read CSV files with explicit schema
        ```python
        df = session.read.csv(
            ["a.csv", "b.csv"],
            schema=Schema([
                ColumnField(name="id", data_type=IntegerType),
                ColumnField(name="value", data_type=FloatType)
            ])
        )            ```
    """
    if schema is not None and merge_schemas:
        raise ValidationError(
            "Cannot specify both 'schema' and 'merge_schemas=True' - these options conflict. "
            "Choose one approach: "
            "1) Use 'schema' to enforce a specific schema: csv(paths, schema=your_schema), "
            "2) Use 'merge_schemas=True' to automatically merge schemas: csv(paths, merge_schemas=True), "
            "3) Use neither to inherit schema from the first file: csv(paths)"
        )
    if schema is not None:
        for col_field in schema.column_fields:
            if not isinstance(
                col_field.data_type,
                _PrimitiveType,
            ):
                raise ValidationError(
                    f"CSV files only support primitive data types in schema definitions. "
                    f"Column '{col_field.name}' has type {type(col_field.data_type).__name__}, but CSV schemas must use: "
                    f"IntegerType, FloatType, DoubleType, BooleanType, or StringType. "
                    f"Example: Schema([ColumnField(name='id', data_type=IntegerType), ColumnField(name='name', data_type=StringType)])"
                )
    options = {
        "schema": schema,
        "merge_schemas": merge_schemas,
    }
    return self._read_file(
        paths, file_format="csv", file_extension=".csv", **options
    )

parquet

parquet(paths: Union[str, Path, list[Union[str, Path]]], merge_schemas: bool = False) -> DataFrame

Load a DataFrame from one or more Parquet files.

Parameters:

  • paths (Union[str, Path, list[Union[str, Path]]]) –

    A single file path, a glob pattern (e.g., "data/*.parquet"), or a list of paths.

  • merge_schemas (bool, default: False ) –

    If True, infers and merges schemas across all files. Missing columns are filled with nulls, and differing types are widened to a common supertype.

Behavior
  • If merge_schemas=False (default), all files must match the schema of the first file exactly. Subsequent files must contain all columns from the first file with compatible data types. If any column is missing or has incompatible types, an error is raised.
  • If merge_schemas=True, column names are unified across all files, and data types are automatically widened to accommodate all values.
  • The "first file" is defined as:
    • The first file in lexicographic order (for glob patterns), or
    • The first file in the provided list (for lists of paths).
Notes
  • Date and datetime columns are cast to strings during ingestion.

Raises:

  • ValidationError

    If any file does not have a .parquet extension.

  • PlanError

    If schemas cannot be merged or if there's a schema mismatch when merge_schemas=False.

Read a single Parquet file
df = session.read.parquet("file.parquet")
Read multiple Parquet files
df = session.read.parquet("data/*.parquet")
Read Parquet files with schema merging
df = session.read.parquet(["a.parquet", "b.parquet"], merge_schemas=True)
Source code in src/fenic/api/io/reader.py
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
def parquet(
    self,
    paths: Union[str, Path, list[Union[str, Path]]],
    merge_schemas: bool = False,
) -> DataFrame:
    """Load a DataFrame from one or more Parquet files.

    Args:
        paths: A single file path, a glob pattern (e.g., "data/*.parquet"), or a list of paths.
        merge_schemas: If True, infers and merges schemas across all files.
            Missing columns are filled with nulls, and differing types are widened to a common supertype.

    Behavior:
        - If `merge_schemas=False` (default), all files must match the schema of the first file exactly.
        Subsequent files must contain all columns from the first file with compatible data types.
        If any column is missing or has incompatible types, an error is raised.
        - If `merge_schemas=True`, column names are unified across all files, and data types are automatically
        widened to accommodate all values.
        - The "first file" is defined as:
            - The first file in lexicographic order (for glob patterns), or
            - The first file in the provided list (for lists of paths).

    Notes:
        - Date and datetime columns are cast to strings during ingestion.

    Raises:
        ValidationError: If any file does not have a `.parquet` extension.
        PlanError: If schemas cannot be merged or if there's a schema mismatch when merge_schemas=False.

    Example: Read a single Parquet file
        ```python
        df = session.read.parquet("file.parquet")
        ```

    Example: Read multiple Parquet files
        ```python
        df = session.read.parquet("data/*.parquet")
        ```

    Example: Read Parquet files with schema merging
        ```python
        df = session.read.parquet(["a.parquet", "b.parquet"], merge_schemas=True)
        ```
    """
    options = {
        "merge_schemas": merge_schemas,
    }
    return self._read_file(
        paths, file_format="parquet", file_extension=".parquet", **options
    )

DataFrameWriter

DataFrameWriter(dataframe: DataFrame)

Interface used to write a DataFrame to external storage systems.

Similar to PySpark's DataFrameWriter.

Initialize a DataFrameWriter.

Parameters:

  • dataframe (DataFrame) –

    The DataFrame to write.

Methods:

  • csv

    Saves the content of the DataFrame as a single CSV file with comma as the delimiter and headers in the first row.

  • parquet

    Saves the content of the DataFrame as a single Parquet file.

  • save_as_table

    Saves the content of the DataFrame as the specified table.

Source code in src/fenic/api/io/writer.py
27
28
29
30
31
32
33
def __init__(self, dataframe: DataFrame):
    """Initialize a DataFrameWriter.

    Args:
        dataframe: The DataFrame to write.
    """
    self._dataframe = dataframe

csv

csv(file_path: Union[str, Path], mode: Literal['error', 'overwrite', 'ignore'] = 'overwrite') -> QueryMetrics

Saves the content of the DataFrame as a single CSV file with comma as the delimiter and headers in the first row.

Parameters:

  • file_path (Union[str, Path]) –

    Path to save the CSV file to

  • mode (Literal['error', 'overwrite', 'ignore'], default: 'overwrite' ) –

    Write mode. Default is "overwrite". - error: Raises an error if file exists - overwrite: Overwrites the file if it exists - ignore: Silently ignores operation if file exists

Returns:

Save with overwrite mode (default)
df.write.csv("output.csv")  # Overwrites if exists
Save with error mode
df.write.csv("output.csv", mode="error")  # Raises error if exists
Save with ignore mode
df.write.csv("output.csv", mode="ignore")  # Skips if exists
Source code in src/fenic/api/io/writer.py
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
def csv(
    self,
    file_path: Union[str, Path],
    mode: Literal["error", "overwrite", "ignore"] = "overwrite",
) -> QueryMetrics:
    """Saves the content of the DataFrame as a single CSV file with comma as the delimiter and headers in the first row.

    Args:
        file_path: Path to save the CSV file to
        mode: Write mode. Default is "overwrite".
             - error: Raises an error if file exists
             - overwrite: Overwrites the file if it exists
             - ignore: Silently ignores operation if file exists

    Returns:
        QueryMetrics: The query metrics

    Example: Save with overwrite mode (default)
        ```python
        df.write.csv("output.csv")  # Overwrites if exists
        ```

    Example: Save with error mode
        ```python
        df.write.csv("output.csv", mode="error")  # Raises error if exists
        ```

    Example: Save with ignore mode
        ```python
        df.write.csv("output.csv", mode="ignore")  # Skips if exists
        ```
    """
    file_path = str(file_path)
    if not file_path.endswith(".csv"):
        raise ValidationError(
            f"CSV writer requires a '.csv' file extension. "
            f"Your path '{file_path}' is missing the extension."
        )

    sink_plan = FileSink(
        child=self._dataframe._logical_plan,
        sink_type="csv",
        path=file_path,
        mode=mode,
    )

    metrics = self._dataframe._logical_plan.session_state.execution.save_to_file(
        sink_plan, file_path=file_path, mode=mode
    )
    logger.info(metrics.get_summary())
    return metrics

parquet

parquet(file_path: Union[str, Path], mode: Literal['error', 'overwrite', 'ignore'] = 'overwrite') -> QueryMetrics

Saves the content of the DataFrame as a single Parquet file.

Parameters:

  • file_path (Union[str, Path]) –

    Path to save the Parquet file to

  • mode (Literal['error', 'overwrite', 'ignore'], default: 'overwrite' ) –

    Write mode. Default is "overwrite". - error: Raises an error if file exists - overwrite: Overwrites the file if it exists - ignore: Silently ignores operation if file exists

Returns:

Save with overwrite mode (default)
df.write.parquet("output.parquet")  # Overwrites if exists
Save with error mode
df.write.parquet("output.parquet", mode="error")  # Raises error if exists
Save with ignore mode
df.write.parquet("output.parquet", mode="ignore")  # Skips if exists
Source code in src/fenic/api/io/writer.py
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
def parquet(
    self,
    file_path: Union[str, Path],
    mode: Literal["error", "overwrite", "ignore"] = "overwrite",
) -> QueryMetrics:
    """Saves the content of the DataFrame as a single Parquet file.

    Args:
        file_path: Path to save the Parquet file to
        mode: Write mode. Default is "overwrite".
             - error: Raises an error if file exists
             - overwrite: Overwrites the file if it exists
             - ignore: Silently ignores operation if file exists

    Returns:
        QueryMetrics: The query metrics

    Example: Save with overwrite mode (default)
        ```python
        df.write.parquet("output.parquet")  # Overwrites if exists
        ```

    Example: Save with error mode
        ```python
        df.write.parquet("output.parquet", mode="error")  # Raises error if exists
        ```

    Example: Save with ignore mode
        ```python
        df.write.parquet("output.parquet", mode="ignore")  # Skips if exists
        ```
    """
    file_path = str(file_path)
    if not file_path.endswith(".parquet"):
        raise ValidationError(
            f"Parquet writer requires a '.parquet' file extension. "
            f"Your path '{file_path}' is missing the extension."
        )

    sink_plan = FileSink(
        child=self._dataframe._logical_plan,
        sink_type="parquet",
        path=file_path,
        mode=mode,
    )

    metrics = self._dataframe._logical_plan.session_state.execution.save_to_file(
        sink_plan, file_path=file_path, mode=mode
    )
    logger.info(metrics.get_summary())
    return metrics

save_as_table

save_as_table(table_name: str, mode: Literal['error', 'append', 'overwrite', 'ignore'] = 'error') -> QueryMetrics

Saves the content of the DataFrame as the specified table.

Parameters:

  • table_name (str) –

    Name of the table to save to

  • mode (Literal['error', 'append', 'overwrite', 'ignore'], default: 'error' ) –

    Write mode. Default is "error". - error: Raises an error if table exists - append: Appends data to table if it exists - overwrite: Overwrites existing table - ignore: Silently ignores operation if table exists

Returns:

Save with error mode (default)
df.write.save_as_table("my_table")  # Raises error if table exists
Save with append mode
df.write.save_as_table("my_table", mode="append")  # Adds to existing table
Save with overwrite mode
df.write.save_as_table("my_table", mode="overwrite")  # Replaces existing table
Source code in src/fenic/api/io/writer.py
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
def save_as_table(
    self,
    table_name: str,
    mode: Literal["error", "append", "overwrite", "ignore"] = "error",
) -> QueryMetrics:
    """Saves the content of the DataFrame as the specified table.

    Args:
        table_name: Name of the table to save to
        mode: Write mode. Default is "error".
             - error: Raises an error if table exists
             - append: Appends data to table if it exists
             - overwrite: Overwrites existing table
             - ignore: Silently ignores operation if table exists

    Returns:
        QueryMetrics: The query metrics

    Example: Save with error mode (default)
        ```python
        df.write.save_as_table("my_table")  # Raises error if table exists
        ```

    Example: Save with append mode
        ```python
        df.write.save_as_table("my_table", mode="append")  # Adds to existing table
        ```

    Example: Save with overwrite mode
        ```python
        df.write.save_as_table("my_table", mode="overwrite")  # Replaces existing table
        ```
    """
    sink_plan = TableSink(
        child=self._dataframe._logical_plan, table_name=table_name, mode=mode
    )

    metrics = self._dataframe._logical_plan.session_state.execution.save_as_table(
        sink_plan, table_name=table_name, mode=mode
    )
    logger.info(metrics.get_summary())
    return metrics

DataType

Bases: ABC

Base class for all data types.

You won't instantiate this class directly. Instead, use one of the concrete types like StringType, ArrayType, or StructType.

Used for casting, type validation, and schema inference in the DataFrame API.

DocumentPathType

Bases: _StringBackedType

Represents a string containing a a document's local (file system) or remote (URL) path.

EmbeddingType

Bases: DataType

A type representing a fixed-length embedding vector.

Attributes:

  • dimensions (int) –

    The number of dimensions in the embedding vector.

  • embedding_model (str) –

    Name of the model used to generate the embedding.

Create an embedding type for text-embedding-3-small
EmbeddingType(384, embedding_model="text-embedding-3-small")

ExtractSchema

Represents a structured extraction schema.

An extract schema contains a collection of named fields with descriptions that define what information should be extracted into each field.

Methods:

  • field_names

    Get a list of all field names in the schema.

field_names

field_names() -> List[str]

Get a list of all field names in the schema.

Returns:

  • List[str]

    A list of strings containing the names of all fields in the schema.

Source code in src/fenic/core/types/extract_schema.py
123
124
125
126
127
128
129
def field_names(self) -> List[str]:
    """Get a list of all field names in the schema.

    Returns:
        A list of strings containing the names of all fields in the schema.
    """
    return [field.name for field in self.struct_fields]

ExtractSchemaField

ExtractSchemaField(name: str, data_type: Union[DataType, ExtractSchemaList, ExtractSchema], description: str)

Represents a field within an structured extraction schema.

An extract schema field has a name, a data type, and a required description that explains what information should be extracted into this field.

Initialize an ExtractSchemaField.

Parameters:

  • name (str) –

    The name of the field.

  • data_type (Union[DataType, ExtractSchemaList, ExtractSchema]) –

    The data type of the field. Must be either a primitive DataType, ExtractSchemaList, or ExtractSchema.

  • description (str) –

    A description of what information should be extracted into this field.

Raises:

  • ValueError

    If data_type is a non-primitive DataType.

Source code in src/fenic/core/types/extract_schema.py
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
def __init__(
    self,
    name: str,
    data_type: Union[DataType, ExtractSchemaList, ExtractSchema],
    description: str,
):
    """Initialize an ExtractSchemaField.

    Args:
        name: The name of the field.
        data_type: The data type of the field. Must be either a primitive DataType,
            ExtractSchemaList, or ExtractSchema.
        description: A description of what information should be extracted into this field.

    Raises:
        ValueError: If data_type is a non-primitive DataType.
    """
    self.name = name
    if isinstance(data_type, DataType) and not isinstance(
        data_type, _PrimitiveType
    ):
        raise ValueError(
            f"Invalid data type: {data_type}. Only primitive types are supported directly. "
            f"For complex types, please use ExtractSchemaList or ExtractSchema instead."
        )
    self.data_type = data_type
    self.description = description

ExtractSchemaList

ExtractSchemaList(element_type: Union[DataType, ExtractSchema])

Represents a list data type for structured extraction schema definitions.

A schema list contains elements of a specific data type and is used for defining array-like structures in structured extraction schemas.

Initialize an ExtractSchemaList.

Parameters:

  • element_type (Union[DataType, ExtractSchema]) –

    The data type of elements in the list. Must be either a primitive DataType or another ExtractSchema.

Raises:

  • ValueError

    If element_type is a non-primitive DataType.

Source code in src/fenic/core/types/extract_schema.py
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
def __init__(
    self,
    element_type: Union[DataType, ExtractSchema],
):
    """Initialize an ExtractSchemaList.

    Args:
        element_type: The data type of elements in the list. Must be either a primitive
            DataType or another ExtractSchema.

    Raises:
        ValueError: If element_type is a non-primitive DataType.
    """
    if isinstance(element_type, DataType) and not isinstance(
        element_type, _PrimitiveType
    ):
        raise ValueError(
            f"Invalid element type: {element_type}. Only primitive types are supported directly. "
            f"For complex types, please use ExtractSchemaList or ExtractSchema instead."
        )
    self.element_type = element_type

GoogleGLAModelConfig

Bases: BaseModel

Configuration for Google GenerativeLAnguage (GLA) models.

This class defines the configuration settings for models available in Google Developer AI Studio, including model selection and rate limiting parameters. These models are accessible using a GEMINI_API_KEY environment variable.

GoogleVertexModelConfig

Bases: BaseModel

Configuration for Google Vertex models.

This class defines the configuration settings for models available in Google Vertex AI, including model selection and rate limiting parameters. In order to use these models, you must have a Google Cloud service account, or use the gcloud cli tool to authenticate your local environment.

GroupedData

GroupedData(df: DataFrame, by: Optional[List[ColumnOrName]] = None)

Bases: BaseGroupedData

Methods for aggregations on a grouped DataFrame.

Initialize grouped data.

Parameters:

  • df (DataFrame) –

    The DataFrame to group.

  • by (Optional[List[ColumnOrName]], default: None ) –

    Optional list of columns to group by.

Methods:

  • agg

    Compute aggregations on grouped data and return the result as a DataFrame.

Source code in src/fenic/api/dataframe/grouped_data.py
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
def __init__(self, df: DataFrame, by: Optional[List[ColumnOrName]] = None):
    """Initialize grouped data.

    Args:
        df: The DataFrame to group.
        by: Optional list of columns to group by.
    """
    super().__init__(df)
    self._by: List[Column] = []
    for c in by or []:
        if isinstance(c, str):
            self._by.append(col(c))
        elif isinstance(c, Column):
            # Allow any expression except literals
            if isinstance(c._logical_expr, LiteralExpr):
                raise ValueError(f"Cannot group by literal value: {c}")
            self._by.append(c)
        else:
            raise TypeError(
                f"Group by expressions must be string or Column, got {type(c)}"
            )
    self._by_exprs = [c._logical_expr for c in self._by]

agg

agg(*exprs: Union[Column, Dict[str, str]]) -> DataFrame

Compute aggregations on grouped data and return the result as a DataFrame.

This method applies aggregate functions to the grouped data.

Parameters:

  • *exprs (Union[Column, Dict[str, str]], default: () ) –

    Aggregation expressions. Can be:

    • Column expressions with aggregate functions (e.g., count("*"), sum("amount"))
    • A dictionary mapping column names to aggregate function names (e.g., {"amount": "sum", "age": "avg"})

Returns:

  • DataFrame ( DataFrame ) –

    A new DataFrame with one row per group and columns for group keys and aggregated values

Raises:

  • ValueError

    If arguments are not Column expressions or a dictionary

  • ValueError

    If dictionary values are not valid aggregate function names

Count employees by department
# Group by department and count employees
df.group_by("department").agg(count("*").alias("employee_count"))
Multiple aggregations
# Multiple aggregations
df.group_by("department").agg(
    count("*").alias("employee_count"),
    avg("salary").alias("avg_salary"),
    max("age").alias("max_age")
)
Dictionary style aggregations
# Dictionary style for simple aggregations
df.group_by("department", "location").agg({"salary": "avg", "age": "max"})
Source code in src/fenic/api/dataframe/grouped_data.py
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
def agg(self, *exprs: Union[Column, Dict[str, str]]) -> DataFrame:
    """Compute aggregations on grouped data and return the result as a DataFrame.

    This method applies aggregate functions to the grouped data.

    Args:
        *exprs: Aggregation expressions. Can be:

            - Column expressions with aggregate functions (e.g., `count("*")`, `sum("amount")`)
            - A dictionary mapping column names to aggregate function names (e.g., `{"amount": "sum", "age": "avg"}`)

    Returns:
        DataFrame: A new DataFrame with one row per group and columns for group keys and aggregated values

    Raises:
        ValueError: If arguments are not Column expressions or a dictionary
        ValueError: If dictionary values are not valid aggregate function names

    Example: Count employees by department
        ```python
        # Group by department and count employees
        df.group_by("department").agg(count("*").alias("employee_count"))
        ```

    Example: Multiple aggregations
        ```python
        # Multiple aggregations
        df.group_by("department").agg(
            count("*").alias("employee_count"),
            avg("salary").alias("avg_salary"),
            max("age").alias("max_age")
        )
        ```

    Example: Dictionary style aggregations
        ```python
        # Dictionary style for simple aggregations
        df.group_by("department", "location").agg({"salary": "avg", "age": "max"})
        ```
    """
    self._validate_agg_exprs(*exprs)
    if len(exprs) == 1 and isinstance(exprs[0], dict):
        agg_dict = exprs[0]
        return self.agg(*self._process_agg_dict(agg_dict))

    agg_exprs = self._process_agg_exprs(exprs)
    return self._df._from_logical_plan(
        Aggregate(self._df._logical_plan, self._by_exprs, agg_exprs),
    )

JoinExample

Bases: BaseModel

A single semantic example for semantic join operations.

Join examples demonstrate the evaluation of two input strings across different datasets against a specific condition, used in a semantic.join operation.

JoinExampleCollection

JoinExampleCollection(examples: List[ExampleType] = None)

Bases: BaseExampleCollection[JoinExample]

Collection of examples for semantic join operations.

Methods:

  • from_polars

    Create collection from a Polars DataFrame. Must have 'left', 'right', and 'output' columns.

Source code in src/fenic/core/types/semantic_examples.py
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
def __init__(self, examples: List[ExampleType] = None):
    """Initialize a collection of semantic examples.

    Args:
        examples: Optional list of examples to add to the collection. Each example
            will be processed through create_example() to ensure proper formatting
            and validation.

    Note:
        The examples list is initialized as empty if no examples are provided.
        Each example in the provided list will be processed through create_example()
        to ensure proper formatting and validation.
    """
    self.examples: List[ExampleType] = []
    if examples:
        for example in examples:
            self.create_example(example)

from_polars classmethod

from_polars(df: DataFrame) -> JoinExampleCollection

Create collection from a Polars DataFrame. Must have 'left', 'right', and 'output' columns.

Source code in src/fenic/core/types/semantic_examples.py
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
@classmethod
def from_polars(cls, df: pl.DataFrame) -> JoinExampleCollection:
    """Create collection from a Polars DataFrame. Must have 'left', 'right', and 'output' columns."""
    collection = cls()

    required_columns = [
        EXAMPLE_LEFT_KEY,
        EXAMPLE_RIGHT_KEY,
        EXAMPLE_OUTPUT_KEY,
    ]
    for col in required_columns:
        if col not in df.columns:
            raise InvalidExampleCollectionError(
                f"Join Examples DataFrame missing required '{col}' column"
            )

    for row in df.iter_rows(named=True):
        for col in required_columns:
            if row[col] is None:
                raise InvalidExampleCollectionError(
                    f"Join Examples DataFrame contains null values in '{col}' column"
                )

        example = JoinExample(
            left=row[EXAMPLE_LEFT_KEY],
            right=row[EXAMPLE_RIGHT_KEY],
            output=row[EXAMPLE_OUTPUT_KEY],
        )
        collection.create_example(example)

    return collection

LMMetrics dataclass

LMMetrics(num_uncached_input_tokens: int = 0, num_cached_input_tokens: int = 0, num_output_tokens: int = 0, cost: float = 0.0, num_requests: int = 0)

Tracks language model usage metrics including token counts and costs.

Attributes:

  • num_uncached_input_tokens (int) –

    Number of uncached tokens in the prompt/input

  • num_cached_input_tokens (int) –

    Number of cached tokens in the prompt/input,

  • num_output_tokens (int) –

    Number of tokens in the completion/output

  • cost (float) –

    Total cost in USD for the LM API call

Lineage

Lineage(lineage: BaseLineage)

Query interface for tracing data lineage through a query plan.

This class allows you to navigate through the query plan both forwards and backwards, tracing how specific rows are transformed through each operation.

Example
# Create a lineage query starting from the root
query = LineageQuery(lineage, session.execution)

# Or start from a specific source
query.start_from_source("my_table")

# Trace rows backwards through a transformation
result = query.backward(["uuid1", "uuid2"])

# Trace rows forward to see their outputs
result = query.forward(["uuid3", "uuid4"])

Initialize a Lineage instance.

Parameters:

  • lineage (BaseLineage) –

    The underlying lineage implementation.

Methods:

  • backwards

    Trace rows backwards to see which input rows produced them.

  • forwards

    Trace rows forward to see how they are transformed by the next operation.

  • get_result_df

    Get the result of the query as a Polars DataFrame.

  • get_source_df

    Get a query source by name as a Polars DataFrame.

  • get_source_names

    Get the names of all sources in the query plan. Used to determine where to start the lineage traversal.

  • show

    Print the operator tree of the query.

  • skip_backwards

    [Not Implemented] Trace rows backwards through multiple operations at once.

  • skip_forwards

    [Not Implemented] Trace rows forward through multiple operations at once.

  • start_from_source

    Set the current position to a specific source in the query plan.

Source code in src/fenic/api/lineage.py
34
35
36
37
38
39
40
def __init__(self, lineage: BaseLineage):
    """Initialize a Lineage instance.

    Args:
        lineage: The underlying lineage implementation.
    """
    self.lineage = lineage

backwards

backwards(ids: List[str], branch_side: Optional[BranchSide] = None) -> pl.DataFrame

Trace rows backwards to see which input rows produced them.

Parameters:

  • ids (List[str]) –

    List of UUIDs identifying the rows to trace back

  • branch_side (Optional[BranchSide], default: None ) –

    For operators with multiple inputs (like joins), specify which input to trace ("left" or "right"). Not needed for single-input operations.

Returns:

  • DataFrame

    DataFrame containing the source rows that produced the specified outputs

Raises:

  • ValueError

    If invalid ids format or incorrect branch_side specification

Example
# Simple backward trace
source_rows = query.backward(["result_uuid1"])

# Trace back through a join
left_rows = query.backward(["join_uuid1"], branch_side="left")
right_rows = query.backward(["join_uuid1"], branch_side="right")
Source code in src/fenic/api/lineage.py
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
@validate_call(config=ConfigDict(strict=True))
def backwards(
    self, ids: List[str], branch_side: Optional[BranchSide] = None
) -> pl.DataFrame:
    """Trace rows backwards to see which input rows produced them.

    Args:
        ids: List of UUIDs identifying the rows to trace back
        branch_side: For operators with multiple inputs (like joins), specify which
            input to trace ("left" or "right"). Not needed for single-input operations.

    Returns:
        DataFrame containing the source rows that produced the specified outputs

    Raises:
        ValueError: If invalid ids format or incorrect branch_side specification

    Example:
        ```python
        # Simple backward trace
        source_rows = query.backward(["result_uuid1"])

        # Trace back through a join
        left_rows = query.backward(["join_uuid1"], branch_side="left")
        right_rows = query.backward(["join_uuid1"], branch_side="right")
        ```
    """
    return self.lineage.backwards(ids, branch_side)

forwards

forwards(row_ids: List[str]) -> pl.DataFrame

Trace rows forward to see how they are transformed by the next operation.

Parameters:

  • row_ids (List[str]) –

    List of UUIDs identifying the rows to trace

Returns:

  • DataFrame

    DataFrame containing the transformed rows in the next operation

Raises:

  • ValueError

    If at root node or if row_ids format is invalid

Example
# Trace how specific customer rows are transformed
transformed = query.forward(["customer_uuid1", "customer_uuid2"])
Source code in src/fenic/api/lineage.py
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
@validate_call(config=ConfigDict(strict=True))
def forwards(self, row_ids: List[str]) -> pl.DataFrame:
    """Trace rows forward to see how they are transformed by the next operation.

    Args:
        row_ids: List of UUIDs identifying the rows to trace

    Returns:
        DataFrame containing the transformed rows in the next operation

    Raises:
        ValueError: If at root node or if row_ids format is invalid

    Example:
        ```python
        # Trace how specific customer rows are transformed
        transformed = query.forward(["customer_uuid1", "customer_uuid2"])
        ```
    """
    return self.lineage.forwards(row_ids)

get_result_df

get_result_df() -> pl.DataFrame

Get the result of the query as a Polars DataFrame.

Source code in src/fenic/api/lineage.py
150
151
152
def get_result_df(self) -> pl.DataFrame:
    """Get the result of the query as a Polars DataFrame."""
    return self.lineage.get_result_df()

get_source_df

get_source_df(source_name: str) -> pl.DataFrame

Get a query source by name as a Polars DataFrame.

Source code in src/fenic/api/lineage.py
154
155
156
157
@validate_call(config=ConfigDict(strict=True))
def get_source_df(self, source_name: str) -> pl.DataFrame:
    """Get a query source by name as a Polars DataFrame."""
    return self.lineage.get_source_df(source_name)

get_source_names

get_source_names() -> List[str]

Get the names of all sources in the query plan. Used to determine where to start the lineage traversal.

Source code in src/fenic/api/lineage.py
42
43
44
45
@validate_call(config=ConfigDict(strict=True))
def get_source_names(self) -> List[str]:
    """Get the names of all sources in the query plan. Used to determine where to start the lineage traversal."""
    return self.lineage.get_source_names()

show

show() -> None

Print the operator tree of the query.

Source code in src/fenic/api/lineage.py
47
48
49
def show(self) -> None:
    """Print the operator tree of the query."""
    print(self.lineage.stringify_graph())

skip_backwards

skip_backwards(ids: List[str]) -> Dict[str, pl.DataFrame]

[Not Implemented] Trace rows backwards through multiple operations at once.

This method will allow efficient tracing through multiple operations without intermediate results.

Parameters:

  • ids (List[str]) –

    List of UUIDs identifying the rows to trace back

Returns:

  • Dict[str, DataFrame]

    Dictionary mapping operation names to their source DataFrames

Raises:

  • NotImplementedError

    This method is not yet implemented

Source code in src/fenic/api/lineage.py
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
def skip_backwards(self, ids: List[str]) -> Dict[str, pl.DataFrame]:
    """[Not Implemented] Trace rows backwards through multiple operations at once.

    This method will allow efficient tracing through multiple operations without
    intermediate results.

    Args:
        ids: List of UUIDs identifying the rows to trace back

    Returns:
        Dictionary mapping operation names to their source DataFrames

    Raises:
        NotImplementedError: This method is not yet implemented
    """
    raise NotImplementedError("Skip backwards not yet implemented")

skip_forwards

skip_forwards(row_ids: List[str]) -> pl.DataFrame

[Not Implemented] Trace rows forward through multiple operations at once.

This method will allow efficient tracing through multiple operations without intermediate results.

Parameters:

  • row_ids (List[str]) –

    List of UUIDs identifying the rows to trace

Returns:

  • DataFrame

    DataFrame containing the final transformed rows

Raises:

  • NotImplementedError

    This method is not yet implemented

Source code in src/fenic/api/lineage.py
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
def skip_forwards(self, row_ids: List[str]) -> pl.DataFrame:
    """[Not Implemented] Trace rows forward through multiple operations at once.

    This method will allow efficient tracing through multiple operations without
    intermediate results.

    Args:
        row_ids: List of UUIDs identifying the rows to trace

    Returns:
        DataFrame containing the final transformed rows

    Raises:
        NotImplementedError: This method is not yet implemented
    """
    raise NotImplementedError("Skip forwards not yet implemented")

start_from_source

start_from_source(source_name: str) -> None

Set the current position to a specific source in the query plan.

Parameters:

  • source_name (str) –

    Name of the source table to start from

Example
query.start_from_source("customers")
# Now you can trace forward from the customers table
Source code in src/fenic/api/lineage.py
51
52
53
54
55
56
57
58
59
60
61
62
63
64
@validate_call(config=ConfigDict(strict=True))
def start_from_source(self, source_name: str) -> None:
    """Set the current position to a specific source in the query plan.

    Args:
        source_name: Name of the source table to start from

    Example:
        ```python
        query.start_from_source("customers")
        # Now you can trace forward from the customers table
        ```
    """
    self.lineage.start_from_source(source_name)

MapExample

Bases: BaseModel

A single semantic example for semantic mapping operations.

Map examples demonstrate the transformation of input variables to a specific output string used in a semantic.map operation.

MapExampleCollection

MapExampleCollection(examples: List[ExampleType] = None)

Bases: BaseExampleCollection[MapExample]

Collection of examples for semantic mapping operations.

Map operations transform input variables into a text output according to specified instructions. This collection manages examples that demonstrate the expected transformations for different inputs.

Examples in this collection can have multiple input variables, each mapped to their respective values, with a single output string representing the expected transformation result.

Methods:

  • from_polars

    Create collection from a Polars DataFrame. Must have an 'output' column and at least one input column.

Source code in src/fenic/core/types/semantic_examples.py
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
def __init__(self, examples: List[ExampleType] = None):
    """Initialize a collection of semantic examples.

    Args:
        examples: Optional list of examples to add to the collection. Each example
            will be processed through create_example() to ensure proper formatting
            and validation.

    Note:
        The examples list is initialized as empty if no examples are provided.
        Each example in the provided list will be processed through create_example()
        to ensure proper formatting and validation.
    """
    self.examples: List[ExampleType] = []
    if examples:
        for example in examples:
            self.create_example(example)

from_polars classmethod

from_polars(df: DataFrame) -> MapExampleCollection

Create collection from a Polars DataFrame. Must have an 'output' column and at least one input column.

Source code in src/fenic/core/types/semantic_examples.py
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
@classmethod
def from_polars(cls, df: pl.DataFrame) -> MapExampleCollection:
    """Create collection from a Polars DataFrame. Must have an 'output' column and at least one input column."""
    collection = cls()

    if EXAMPLE_OUTPUT_KEY not in df.columns:
        raise ValueError(
            f"Map Examples DataFrame missing required '{EXAMPLE_OUTPUT_KEY}' column"
        )

    input_cols = [col for col in df.columns if col != EXAMPLE_OUTPUT_KEY]

    if not input_cols:
        raise ValueError(
            "Map Examples DataFrame must have at least one input column"
        )

    for row in df.iter_rows(named=True):
        if row[EXAMPLE_OUTPUT_KEY] is None:
            raise InvalidExampleCollectionError(
                f"Map Examples DataFrame contains null values in '{EXAMPLE_OUTPUT_KEY}' column"
            )

        input_dict = {
            col: str(row[col]) for col in input_cols if row[col] is not None
        }

        example = MapExample(input=input_dict, output=row[EXAMPLE_OUTPUT_KEY])
        collection.create_example(example)

    return collection

OpenAIModelConfig

Bases: BaseModel

Configuration for OpenAI models.

This class defines the configuration settings for OpenAI language and embedding models, including model selection and rate limiting parameters.

Attributes:

  • model_name (Union[OPENAI_AVAILABLE_LANGUAGE_MODELS, OPENAI_AVAILABLE_EMBEDDING_MODELS]) –

    The name of the OpenAI model to use.

  • rpm (int) –

    Requests per minute limit; must be greater than 0.

  • tpm (int) –

    Tokens per minute limit; must be greater than 0.

Examples:

Configuring an OpenAI Language model with rate limits:

config = OpenAIModelConfig(model_name="gpt-4.1-nano", rpm=100, tpm=100)

Configuring an OpenAI Embedding model with rate limits:

config = OpenAIModelConfig(model_name="text-embedding-3-small", rpm=100, tpm=100)

OperatorMetrics dataclass

OperatorMetrics(operator_id: str, num_output_rows: int = 0, execution_time_ms: float = 0.0, lm_metrics: LMMetrics = LMMetrics(), rm_metrics: RMMetrics = RMMetrics(), is_cache_hit: bool = False)

Metrics for a single operator in the query execution plan.

Attributes:

  • operator_id (str) –

    Unique identifier for the operator

  • num_output_rows (int) –

    Number of rows output by this operator

  • execution_time_ms (float) –

    Execution time in milliseconds

  • lm_metrics (LMMetrics) –

    Language model usage metrics for this operator

  • is_cache_hit (bool) –

    Whether results were retrieved from cache

PredicateExample

Bases: BaseModel

A single semantic example for semantic predicate operations.

Predicate examples demonstrate the evaluation of input variables against a specific condition, used in a semantic.predicate operation.

PredicateExampleCollection

PredicateExampleCollection(examples: List[ExampleType] = None)

Bases: BaseExampleCollection[PredicateExample]

Collection of examples for semantic predicate operations.

Predicate operations evaluate conditions on input variables to produce boolean (True/False) results. This collection manages examples that demonstrate the expected boolean outcomes for different inputs.

Examples in this collection can have multiple input variables, each mapped to their respective values, with a single boolean output representing the evaluation result of the predicate.

Methods:

  • from_polars

    Create collection from a Polars DataFrame.

Source code in src/fenic/core/types/semantic_examples.py
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
def __init__(self, examples: List[ExampleType] = None):
    """Initialize a collection of semantic examples.

    Args:
        examples: Optional list of examples to add to the collection. Each example
            will be processed through create_example() to ensure proper formatting
            and validation.

    Note:
        The examples list is initialized as empty if no examples are provided.
        Each example in the provided list will be processed through create_example()
        to ensure proper formatting and validation.
    """
    self.examples: List[ExampleType] = []
    if examples:
        for example in examples:
            self.create_example(example)

from_polars classmethod

from_polars(df: DataFrame) -> PredicateExampleCollection

Create collection from a Polars DataFrame.

Source code in src/fenic/core/types/semantic_examples.py
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
@classmethod
def from_polars(cls, df: pl.DataFrame) -> PredicateExampleCollection:
    """Create collection from a Polars DataFrame."""
    collection = cls()

    # Validate output column exists
    if EXAMPLE_OUTPUT_KEY not in df.columns:
        raise InvalidExampleCollectionError(
            f"Predicate Examples DataFrame missing required '{EXAMPLE_OUTPUT_KEY}' column"
        )

    input_cols = [col for col in df.columns if col != EXAMPLE_OUTPUT_KEY]

    if not input_cols:
        raise InvalidExampleCollectionError(
            "Predicate Examples DataFrame must have at least one input column"
        )

    for row in df.iter_rows(named=True):
        if row[EXAMPLE_OUTPUT_KEY] is None:
            raise InvalidExampleCollectionError(
                f"Predicate Examples DataFrame contains null values in '{EXAMPLE_OUTPUT_KEY}' column"
            )

        input_dict = {col: row[col] for col in input_cols if row[col] is not None}

        example = PredicateExample(input=input_dict, output=row[EXAMPLE_OUTPUT_KEY])
        collection.create_example(example)

    return collection

QueryMetrics dataclass

QueryMetrics(execution_time_ms: float = 0.0, num_output_rows: int = 0, total_lm_metrics: LMMetrics = LMMetrics(), total_rm_metrics: RMMetrics = RMMetrics(), _operator_metrics: Dict[str, OperatorMetrics] = dict(), _plan_repr: PhysicalPlanRepr = lambda: PhysicalPlanRepr(operator_id='empty')())

Comprehensive metrics for an executed query.

Includes overall statistics and detailed metrics for each operator in the execution plan.

Attributes:

  • execution_time_ms (float) –

    Total query execution time in milliseconds

  • num_output_rows (int) –

    Total number of rows returned by the query

  • total_lm_metrics (LMMetrics) –

    Aggregated language model metrics across all operators

Methods:

get_execution_plan_details

get_execution_plan_details() -> str

Generate a formatted execution plan with detailed metrics.

Produces a hierarchical representation of the query execution plan, including performance metrics and language model usage for each operator.

Returns:

  • str ( str ) –

    A formatted string showing the execution plan with metrics.

Source code in src/fenic/core/metrics.py
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
def get_execution_plan_details(self) -> str:
    """Generate a formatted execution plan with detailed metrics.

    Produces a hierarchical representation of the query execution plan,
    including performance metrics and language model usage for each operator.

    Returns:
        str: A formatted string showing the execution plan with metrics.
    """

    def _format_node(node: PhysicalPlanRepr, indent: int = 1) -> str:
        op = self._operator_metrics[node.operator_id]
        indent_str = "  " * indent

        details = [
            f"{indent_str}{op.operator_id}",
            f"{indent_str}  Output Rows: {op.num_output_rows:,}",
            f"{indent_str}  Execution Time: {op.execution_time_ms:.2f}ms",
            f"{indent_str}  Cached: {op.is_cache_hit}",
        ]

        if op.lm_metrics.cost > 0:
            details.extend(
                [
                    f"{indent_str}  Language Model Usage: {op.lm_metrics.num_uncached_input_tokens:,} input tokens, {op.lm_metrics.num_cached_input_tokens:,} cached input tokens, {op.lm_metrics.num_output_tokens:,} output tokens",
                    f"{indent_str}  Language Model Cost: ${op.lm_metrics.cost:.6f}",
                ]
            )

        if op.rm_metrics.cost > 0:
            details.extend(
                [
                    f"{indent_str}  Embedding Model Usage: {op.rm_metrics.num_input_tokens:,} input tokens",
                    f"{indent_str}  Embedding Model Cost: ${op.rm_metrics.cost:.6f}",
                ]
            )
        return (
            "\n".join(details)
            + "\n"
            + "".join(_format_node(child, indent + 1) for child in node.children)
        )

    return f"Execution Plan\n{_format_node(self._plan_repr)}"

get_summary

get_summary() -> str

Summarize the query metrics in a single line.

Returns:

  • str ( str ) –

    A concise summary of execution time, row count, and LM cost.

Source code in src/fenic/core/metrics.py
127
128
129
130
131
132
133
134
135
136
137
138
def get_summary(self) -> str:
    """Summarize the query metrics in a single line.

    Returns:
        str: A concise summary of execution time, row count, and LM cost.
    """
    return (
        f"Query executed in {self.execution_time_ms:.2f}ms, "
        f"returned {self.num_output_rows:,} rows, "
        f"language model cost: ${self.total_lm_metrics.cost:.6f}, "
        f"embedding model cost: ${self.total_rm_metrics.cost:.6f}"
    )

QueryResult dataclass

QueryResult(data: DataLike, metrics: QueryMetrics)

Container for query execution results and associated metadata.

This dataclass bundles together the materialized data from a query execution along with metrics about the execution process. It provides a unified interface for accessing both the computed results and performance information.

Attributes:

  • data (DataLike) –

    The materialized query results in the requested format. Can be any of the supported data types (Polars/Pandas DataFrame, Arrow Table, or Python dict/list structures).

  • metrics (QueryMetrics) –

    Execution metadata including timing information, memory usage, rows processed, and other performance metrics collected during query execution.

Access query results and metrics
# Execute query and get results with metrics
result = df.filter(col("age") > 25).collect("pandas")
pandas_df = result.data  # Access the Pandas DataFrame
print(result.metrics.execution_time)  # Access execution metrics
print(result.metrics.rows_processed)  # Access row count
Work with different data formats
# Get results in different formats
polars_result = df.collect("polars")
arrow_result = df.collect("arrow")
dict_result = df.collect("pydict")

# All contain the same data, different formats
print(type(polars_result.data))  # <class 'polars.DataFrame'>
print(type(arrow_result.data))   # <class 'pyarrow.lib.Table'>
print(type(dict_result.data))    # <class 'dict'>
Note

The actual type of the data attribute depends on the format requested during collection. Use type checking or isinstance() if you need to handle the data differently based on its format.

RMMetrics dataclass

RMMetrics(num_input_tokens: int = 0, num_requests: int = 0, cost: float = 0.0)

Tracks embedding model usage metrics including token counts and costs.

Attributes:

  • num_input_tokens (int) –

    Number of tokens to embed

  • cost (float) –

    Total cost in USD to embed the tokens

Schema

Represents the schema of a DataFrame.

A Schema defines the structure of a DataFrame by specifying an ordered collection of column fields. Each column field defines the name and data type of a column in the DataFrame.

Attributes:

  • column_fields (List[ColumnField]) –

    An ordered list of ColumnField objects that define the structure of the DataFrame.

Methods:

  • column_names

    Get a list of all column names in the schema.

column_names

column_names() -> List[str]

Get a list of all column names in the schema.

Returns:

  • List[str]

    A list of strings containing the names of all columns in the schema.

Source code in src/fenic/core/types/schema.py
62
63
64
65
66
67
68
def column_names(self) -> List[str]:
    """Get a list of all column names in the schema.

    Returns:
        A list of strings containing the names of all columns in the schema.
    """
    return [field.name for field in self.column_fields]

SemanticConfig

Bases: BaseModel

Configuration for semantic language and embedding models.

This class defines the configuration for both language models and optional embedding models used in semantic operations. It ensures that all configured models are valid and supported by their respective providers.

Attributes:

  • language_models (dict[str, ModelConfig]) –

    Mapping of model aliases to language model configurations.

  • default_language_model (Optional[str]) –

    The alias of the default language model to use for semantic operations. Not required if only one language model is configured.

  • embedding_models (Optional[dict[str, ModelConfig]]) –

    Optional mapping of model aliases to embedding model configurations.

  • default_embedding_model (Optional[str]) –

    The alias of the default embedding model to use for semantic operations.

Note

The embedding model is optional and only required for operations that need semantic search or embedding capabilities.

Methods:

model_post_init

model_post_init(__context) -> None

Post initialization hook to set defaults.

This hook runs after the model is initialized and validated. It sets the default language and embedding models if they are not set and there is only one model available.

Source code in src/fenic/api/session/config.py
154
155
156
157
158
159
160
161
162
163
164
165
166
def model_post_init(self, __context) -> None:
    """Post initialization hook to set defaults.

    This hook runs after the model is initialized and validated.
    It sets the default language and embedding models if they are not set
    and there is only one model available.
    """
    # Set default language model if not set and only one model exists
    if self.default_language_model is None and len(self.language_models) == 1:
        self.default_language_model = list(self.language_models.keys())[0]
    # Set default embedding model if not set and only one model exists
    if self.embedding_models is not None and self.default_embedding_model is None and len(self.embedding_models) == 1:
        self.default_embedding_model = list(self.embedding_models.keys())[0]

validate_models

validate_models() -> SemanticConfig

Validates that the selected models are supported by the system.

This validator checks that both the language model and embedding model (if provided) are valid and supported by their respective providers.

Returns:

Raises:

Source code in src/fenic/api/session/config.py
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
@model_validator(mode="after")
def validate_models(self) -> SemanticConfig:
    """Validates that the selected models are supported by the system.

    This validator checks that both the language model and embedding model (if provided)
    are valid and supported by their respective providers.

    Returns:
        The validated SemanticConfig instance.

    Raises:
        ConfigurationError: If any of the models are not supported.
    """
    if len(self.language_models) == 0:
        raise ConfigurationError("You must specify at least one language model configuration.")
    available_language_model_aliases = list(self.language_models.keys())
    if self.default_language_model is None and len(self.language_models) > 1:
        raise ConfigurationError(f"default_language_model is not set, and multiple language models are configured. Please specify one of: {available_language_model_aliases} as a default_language_model.")

    if self.default_language_model is not None and self.default_language_model not in self.language_models:
        raise ConfigurationError(f"default_language_model {self.default_language_model} is not in configured map of language models. Available models: {available_language_model_aliases} .")

    for model_alias, language_model in self.language_models.items():
        if isinstance(language_model, OpenAIModelConfig):
            language_model_provider = ModelProvider.OPENAI
            language_model_name = language_model.model_name
        elif isinstance(language_model, AnthropicModelConfig):
            language_model_provider = ModelProvider.ANTHROPIC
            language_model_name = language_model.model_name
        elif isinstance(language_model, GoogleGLAModelConfig):
            language_model_provider = ModelProvider.GOOGLE_GLA
            language_model_name = language_model.model_name
        elif isinstance(language_model, GoogleVertexModelConfig):
            language_model_provider = ModelProvider.GOOGLE_VERTEX
            language_model_name = language_model.model_name
        else:
            raise ConfigurationError(
                f"Invalid language model: {model_alias}: {language_model} unsupported model type.")

        completion_model = model_catalog.get_completion_model_parameters(language_model_provider,
                                                                         language_model_name)
        if completion_model is None:
            raise ConfigurationError(
                model_catalog.generate_unsupported_completion_model_error_message(
                    language_model_provider,
                    language_model_name
                )
            )
    if self.embedding_models is not None:
        if self.default_embedding_model is None and len(self.embedding_models) > 1:
            raise ConfigurationError("embedding_models is set but default_embedding_model is missing (ambiguous).")

        if self.default_embedding_model is not None and self.default_embedding_model not in self.embedding_models:
            raise ConfigurationError(
                f"default_embedding_model {self.default_embedding_model} is not in embedding_models")
        for model_alias, embedding_model in self.embedding_models.items():
            if isinstance(embedding_model, OpenAIModelConfig):
                embedding_model_provider = ModelProvider.OPENAI
                embedding_model_name = embedding_model.model_name
            else:
                raise ConfigurationError(
                    f"Invalid embedding model: {model_alias}: {embedding_model} unsupported model type")
            embedding_model_parameters = model_catalog.get_embedding_model_parameters(embedding_model_provider,
                                                                                 embedding_model_name)
            if embedding_model_parameters is None:
                raise ConfigurationError(model_catalog.generate_unsupported_embedding_model_error_message(
                    embedding_model_provider,
                    embedding_model_name
                ))

    return self

SemanticExtensions

SemanticExtensions(df: DataFrame)

A namespace for semantic dataframe operators.

Initialize semantic extensions.

Parameters:

  • df (DataFrame) –

    The DataFrame to extend with semantic operations.

Methods:

  • join

    Performs a semantic join between two DataFrames using a natural language predicate.

  • sim_join

    Performs a semantic similarity join between two DataFrames using embedding expressions.

  • with_cluster_labels

    Cluster rows using K-means and add cluster metadata columns.

Source code in src/fenic/api/dataframe/semantic_extensions.py
30
31
32
33
34
35
36
def __init__(self, df: DataFrame):
    """Initialize semantic extensions.

    Args:
        df: The DataFrame to extend with semantic operations.
    """
    self._df = df

join

join(other: DataFrame, join_instruction: str, examples: Optional[JoinExampleCollection] = None, model_alias: Optional[str] = None) -> DataFrame

Performs a semantic join between two DataFrames using a natural language predicate.

That evaluates to either true or false for each potential row pair.

The join works by: 1. Evaluating the provided join_instruction as a boolean predicate for each possible pair of rows 2. Including ONLY the row pairs where the predicate evaluates to True in the result set 3. Excluding all row pairs where the predicate evaluates to False

The instruction must reference exactly two columns, one from each DataFrame, using the :left and :right suffixes to indicate column origin.

This is useful when row pairing decisions require complex reasoning based on a custom predicate rather than simple equality or similarity matching.

Parameters:

  • other (DataFrame) –

    The DataFrame to join with.

  • join_instruction (str) –

    A natural language description of how to match values.

    • Must include one placeholder from the left DataFrame (e.g. {resume_summary:left}) and one from the right (e.g. {job_description:right}).
    • This instruction is evaluated as a boolean predicate - pairs where it's True are included, pairs where it's False are excluded.
  • examples (Optional[JoinExampleCollection], default: None ) –

    Optional JoinExampleCollection containing labeled pairs (left, right, output) to guide the semantic join behavior.

  • model_alias (Optional[str], default: None ) –

    Optional alias for the language model to use for the mapping. If None, will use the language model configured as the default.

Returns:

  • DataFrame ( DataFrame ) –

    A new DataFrame containing only the row pairs where the join_instruction predicate evaluates to True.

Raises:

  • TypeError

    If other is not a DataFrame or join_instruction is not a string.

  • ValueError

    If the instruction format is invalid or references invalid columns.

Basic semantic join
# Match job listings with candidate resumes based on title/skills
# Only includes pairs where the predicate evaluates to True
df_jobs.semantic.join(df_resumes,
    join_instruction="Given a candidate's resume_summary: {resume_summary:left} and a job description: {job_description:right}, does the candidate have the appropriate skills for the job?"
)
Semantic join with examples
# Improve join quality with examples
examples = JoinExampleCollection()
examples.create_example(JoinExample(
    left="5 years experience building backend services in Python using asyncio, FastAPI, and PostgreSQL",
    right="Senior Software Engineer - Backend",
    output=True))  # This pair WILL be included in similar cases
examples.create_example(JoinExample(
    left="5 years experience with growth strategy, private equity due diligence, and M&A",
    right="Product Manager - Hardware",
    output=False))  # This pair will NOT be included in similar cases
df_jobs.semantic.join(df_resumes,
    join_instruction="Given a candidate's resume_summary: {resume_summary:left} and a job description: {job_description:right}, does the candidate have the appropriate skills for the job?",
    examples=examples)
Source code in src/fenic/api/dataframe/semantic_extensions.py
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
def join(
    self,
    other: DataFrame,
    join_instruction: str,
    examples: Optional[JoinExampleCollection] = None,
    model_alias: Optional[str] = None,
) -> DataFrame:
    """Performs a semantic join between two DataFrames using a natural language predicate.

    That evaluates to either true or false for each potential row pair.

    The join works by:
    1. Evaluating the provided join_instruction as a boolean predicate for each possible pair of rows
    2. Including ONLY the row pairs where the predicate evaluates to True in the result set
    3. Excluding all row pairs where the predicate evaluates to False

    The instruction must reference **exactly two columns**, one from each DataFrame,
    using the `:left` and `:right` suffixes to indicate column origin.

    This is useful when row pairing decisions require complex reasoning based on a custom predicate rather than simple equality or similarity matching.

    Args:
        other: The DataFrame to join with.
        join_instruction: A natural language description of how to match values.

            - Must include one placeholder from the left DataFrame (e.g. `{resume_summary:left}`)
            and one from the right (e.g. `{job_description:right}`).
            - This instruction is evaluated as a boolean predicate - pairs where it's `True` are included,
            pairs where it's `False` are excluded.
        examples: Optional JoinExampleCollection containing labeled pairs (`left`, `right`, `output`)
            to guide the semantic join behavior.
        model_alias: Optional alias for the language model to use for the mapping. If None, will use the language model configured as the default.

    Returns:
        DataFrame: A new DataFrame containing only the row pairs where the join_instruction
                  predicate evaluates to True.

    Raises:
        TypeError: If `other` is not a DataFrame or `join_instruction` is not a string.
        ValueError: If the instruction format is invalid or references invalid columns.

    Example: Basic semantic join
        ```python
        # Match job listings with candidate resumes based on title/skills
        # Only includes pairs where the predicate evaluates to True
        df_jobs.semantic.join(df_resumes,
            join_instruction="Given a candidate's resume_summary: {resume_summary:left} and a job description: {job_description:right}, does the candidate have the appropriate skills for the job?"
        )
        ```

    Example: Semantic join with examples
        ```python
        # Improve join quality with examples
        examples = JoinExampleCollection()
        examples.create_example(JoinExample(
            left="5 years experience building backend services in Python using asyncio, FastAPI, and PostgreSQL",
            right="Senior Software Engineer - Backend",
            output=True))  # This pair WILL be included in similar cases
        examples.create_example(JoinExample(
            left="5 years experience with growth strategy, private equity due diligence, and M&A",
            right="Product Manager - Hardware",
            output=False))  # This pair will NOT be included in similar cases
        df_jobs.semantic.join(df_resumes,
            join_instruction="Given a candidate's resume_summary: {resume_summary:left} and a job description: {job_description:right}, does the candidate have the appropriate skills for the job?",
            examples=examples)
        ```
    """
    from fenic.api.dataframe.dataframe import DataFrame

    if not isinstance(other, DataFrame):
        raise TypeError(f"other argument must be a DataFrame, got {type(other)}")

    if not isinstance(join_instruction, str):
        raise TypeError(
            f"join_instruction argument must be a string, got {type(join_instruction)}"
        )
    join_columns = utils.parse_instruction(join_instruction)
    if len(join_columns) != 2:
        raise ValueError(
            f"join_instruction must contain exactly two columns, got {len(join_columns)}"
        )
    left_on = None
    right_on = None
    for join_col in join_columns:
        if join_col.endswith(":left"):
            if left_on is not None:
                raise ValueError(
                    "join_instruction cannot contain multiple :left columns"
                )
            left_on = col(join_col.split(":")[0])
        elif join_col.endswith(":right"):
            if right_on is not None:
                raise ValueError(
                    "join_instruction cannot contain multiple :right columns"
                )
            right_on = col(join_col.split(":")[0])
        else:
            raise ValueError(
                f"Column '{join_col}' must end with either :left or :right"
            )

    if left_on is None or right_on is None:
        raise ValueError(
            "join_instruction must contain exactly one :left and one :right column"
        )

    return self._df._from_logical_plan(
        SemanticJoin(
            left=self._df._logical_plan,
            right=other._logical_plan,
            left_on=left_on._logical_expr,
            right_on=right_on._logical_expr,
            join_instruction=join_instruction,
            examples=examples,
            model_alias=model_alias,
        ),
    )

sim_join

sim_join(other: DataFrame, left_on: ColumnOrName, right_on: ColumnOrName, k: int = 1, similarity_metric: SemanticSimilarityMetric = 'cosine', similarity_score_column: Optional[str] = None) -> DataFrame

Performs a semantic similarity join between two DataFrames using embedding expressions.

For each row in the left DataFrame, returns the top k most semantically similar rows from the right DataFrame based on the specified similarity metric.

Parameters:

  • other (DataFrame) –

    The right-hand DataFrame to join with.

  • left_on (ColumnOrName) –

    Expression or column representing embeddings in the left DataFrame.

  • right_on (ColumnOrName) –

    Expression or column representing embeddings in the right DataFrame.

  • k (int, default: 1 ) –

    Number of most similar matches to return per row.

  • similarity_metric (SemanticSimilarityMetric, default: 'cosine' ) –

    Similarity metric to use: "l2", "cosine", or "dot".

  • similarity_score_column (Optional[str], default: None ) –

    If set, adds a column with this name containing similarity scores. If None, the scores are omitted.

Returns:

  • DataFrame

    A DataFrame containing one row for each of the top-k matches per row in the left DataFrame.

  • DataFrame

    The result includes all columns from both DataFrames, optionally augmented with a similarity score column

  • DataFrame

    if similarity_score_column is provided.

Raises:

  • ValidationError

    If k is not positive or if the columns are invalid.

  • ValidationError

    If similarity_metric is not one of "l2", "cosine", "dot"

Match queries to FAQ entries
# Match customer queries to FAQ entries
df_queries.semantic.sim_join(
    df_faqs,
    left_on=embeddings(col("query_text")),
    right_on=embeddings(col("faq_question")),
    k=1
)
Link headlines to articles
# Link news headlines to full articles
df_headlines.semantic.sim_join(
    df_articles,
    left_on=embeddings(col("headline")),
    right_on=embeddings(col("content")),
    k=3,
    return_similarity_scores=True
)
Find similar job postings
# Find similar job postings across two sources
df_linkedin.semantic.sim_join(
    df_indeed,
    left_on=embeddings(col("job_title")),
    right_on=embeddings(col("job_description")),
    k=2
)
Source code in src/fenic/api/dataframe/semantic_extensions.py
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
def sim_join(
    self,
    other: DataFrame,
    left_on: ColumnOrName,
    right_on: ColumnOrName,
    k: int = 1,
    similarity_metric: SemanticSimilarityMetric = "cosine",
    similarity_score_column: Optional[str] = None,
) -> DataFrame:
    """Performs a semantic similarity join between two DataFrames using embedding expressions.

    For each row in the left DataFrame, returns the top `k` most semantically similar rows
    from the right DataFrame based on the specified similarity metric.

    Args:
        other: The right-hand DataFrame to join with.
        left_on: Expression or column representing embeddings in the left DataFrame.
        right_on: Expression or column representing embeddings in the right DataFrame.
        k: Number of most similar matches to return per row.
        similarity_metric: Similarity metric to use: "l2", "cosine", or "dot".
        similarity_score_column: If set, adds a column with this name containing similarity scores.
            If None, the scores are omitted.

    Returns:
        A DataFrame containing one row for each of the top-k matches per row in the left DataFrame.
        The result includes all columns from both DataFrames, optionally augmented with a similarity score column
        if `similarity_score_column` is provided.

    Raises:
        ValidationError: If `k` is not positive or if the columns are invalid.
        ValidationError: If `similarity_metric` is not one of "l2", "cosine", "dot"

    Example: Match queries to FAQ entries
        ```python
        # Match customer queries to FAQ entries
        df_queries.semantic.sim_join(
            df_faqs,
            left_on=embeddings(col("query_text")),
            right_on=embeddings(col("faq_question")),
            k=1
        )
        ```

    Example: Link headlines to articles
        ```python
        # Link news headlines to full articles
        df_headlines.semantic.sim_join(
            df_articles,
            left_on=embeddings(col("headline")),
            right_on=embeddings(col("content")),
            k=3,
            return_similarity_scores=True
        )
        ```

    Example: Find similar job postings
        ```python
        # Find similar job postings across two sources
        df_linkedin.semantic.sim_join(
            df_indeed,
            left_on=embeddings(col("job_title")),
            right_on=embeddings(col("job_description")),
            k=2
        )
        ```
    """
    from fenic.api.dataframe.dataframe import DataFrame

    if not isinstance(right_on, ColumnOrName):
        raise ValidationError(
            f"The `right_on` argument must be a `Column` or a string representing a column name, "
            f"but got `{type(right_on).__name__}` instead."
        )
    if not isinstance(other, DataFrame):
        raise ValidationError(
                        f"The `other` argument to `sim_join()` must be a DataFrame`, but got `{type(other).__name__}`."
                    )
    if not (isinstance(k, int) and k > 0):
        raise ValidationError(
            f"The parameter `k` must be a positive integer, but received `{k}`."
        )
    args = get_args(SemanticSimilarityMetric)
    if similarity_metric not in args:
        raise ValidationError(
            f"The `similarity_metric` argument must be one of {args}, but got `{similarity_metric}`."
        )

    def _validate_column(column: ColumnOrName, name: str):
        if column is None:
            raise ValidationError(f"The `{name}` argument must not be None.")
        if not isinstance(column, ColumnOrName):
            raise ValidationError(
                f"The `{name}` argument must be a `Column` or a string representing a column name, "
                f"but got `{type(column).__name__}` instead."
            )

    _validate_column(left_on, "left_on")
    _validate_column(right_on, "right_on")

    return self._df._from_logical_plan(
        SemanticSimilarityJoin(
            self._df._logical_plan,
            other._logical_plan,
            Column._from_col_or_name(left_on)._logical_expr,
            Column._from_col_or_name(right_on)._logical_expr,
            k,
            similarity_metric,
            similarity_score_column,
        ),
    )

with_cluster_labels

with_cluster_labels(by: ColumnOrName, num_clusters: int, label_column: str = 'cluster_label', centroid_column: Optional[str] = None) -> DataFrame

Cluster rows using K-means and add cluster metadata columns.

This method clusters rows based on the given embedding column or expression using K-means. It adds a new column with cluster assignments, and optionally includes the centroid embedding for each assigned cluster.

Parameters:

  • by (ColumnOrName) –

    Column or expression producing embeddings to cluster (e.g., embed(col("text"))).

  • num_clusters (int) –

    Number of clusters to compute (must be > 0).

  • label_column (str, default: 'cluster_label' ) –

    Name of the output column for cluster IDs. Default is "cluster_label".

  • centroid_column (Optional[str], default: None ) –

    If provided, adds a column with this name containing the centroid embedding for each row's assigned cluster.

Returns:

  • DataFrame

    A DataFrame with all original columns plus:

  • DataFrame
    • <label_column>: integer cluster assignment (0 to num_clusters - 1)
  • DataFrame
    • <centroid_column>: cluster centroid embedding, if specified

Raises:

  • ValidationError

    If num_clusters is not a positive integer

  • ValidationError

    If label_column is not a non-empty string

  • ValidationError

    If centroid_column is not a non-empty string

  • TypeMismatchError

    If the column is not an EmbeddingType

Basic clustering
# Cluster customer feedback and add cluster metadata
clustered_df = df.semantic.with_cluster_labels("feedback_embeddings", 5)

# Then use regular operations to analyze clusters
clustered_df.group_by("cluster_label").agg(count("*"), avg("rating"))
Filter outliers using centroids
# Cluster and filter out rows far from their centroid
clustered_df = df.semantic.with_cluster_labels("embeddings", 3, centroid_column="cluster_centroid")
clean_df = clustered_df.filter(
    embedding.compute_similarity("embeddings", "cluster_centroid", metric="cosine") > 0.7
)
Source code in src/fenic/api/dataframe/semantic_extensions.py
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
def with_cluster_labels(self, by: ColumnOrName, num_clusters: int, label_column: str = "cluster_label", centroid_column: Optional[str] = None) -> DataFrame:
    """Cluster rows using K-means and add cluster metadata columns.

    This method clusters rows based on the given embedding column or expression using K-means.
    It adds a new column with cluster assignments, and optionally includes the centroid embedding
    for each assigned cluster.

    Args:
        by: Column or expression producing embeddings to cluster (e.g., `embed(col("text"))`).
        num_clusters: Number of clusters to compute (must be > 0).
        label_column: Name of the output column for cluster IDs. Default is "cluster_label".
        centroid_column: If provided, adds a column with this name containing the centroid embedding
                        for each row's assigned cluster.

    Returns:
        A DataFrame with all original columns plus:
        - `<label_column>`: integer cluster assignment (0 to num_clusters - 1)
        - `<centroid_column>`: cluster centroid embedding, if specified

    Raises:
        ValidationError: If num_clusters is not a positive integer
        ValidationError: If label_column is not a non-empty string
        ValidationError: If centroid_column is not a non-empty string
        TypeMismatchError: If the column is not an EmbeddingType

    Example: Basic clustering
        ```python
        # Cluster customer feedback and add cluster metadata
        clustered_df = df.semantic.with_cluster_labels("feedback_embeddings", 5)

        # Then use regular operations to analyze clusters
        clustered_df.group_by("cluster_label").agg(count("*"), avg("rating"))
        ```

    Example: Filter outliers using centroids
        ```python
        # Cluster and filter out rows far from their centroid
        clustered_df = df.semantic.with_cluster_labels("embeddings", 3, centroid_column="cluster_centroid")
        clean_df = clustered_df.filter(
            embedding.compute_similarity("embeddings", "cluster_centroid", metric="cosine") > 0.7
        )
        ```
    """
    # Validate num_clusters
    if not isinstance(num_clusters, int) or num_clusters <= 0:
        raise ValidationError("`num_clusters` must be a positive integer greater than 0.")

    # Validate clustering target
    if not isinstance(by, ColumnOrName):
        raise ValidationError(
            f"Invalid cluster by: expected a column name (str) or Column object, got {type(by).__name__}."
        )

    # Validate label_column
    if not isinstance(label_column, str) or not label_column:
        raise ValidationError("`label_column` must be a non-empty string.")

    # Validate centroid_column if provided
    if centroid_column is not None:
        if not isinstance(centroid_column, str) or not centroid_column:
            raise ValidationError("`centroid_column` must be a non-empty string if provided.")

    # Check that the expression isn't a literal
    by_expr = Column._from_col_or_name(by)._logical_expr
    if isinstance(by_expr, LiteralExpr):
        raise ValidationError(
            f"Invalid cluster by: Cannot cluster by a literal value: {by_expr}."
        )

    return self._df._from_logical_plan(
        SemanticCluster(
            self._df._logical_plan, by_expr, num_clusters, label_column, centroid_column
        )
    )

Session

The entry point to programming with the DataFrame API. Similar to PySpark's SparkSession.

Create a session with default configuration
session = Session.get_or_create(SessionConfig(app_name="my_app"))
Create a session with cloud configuration
config = SessionConfig(
    app_name="my_app",
    cloud=True,
    api_key="your_api_key"
)
session = Session.get_or_create(config)

Methods:

  • create_dataframe

    Create a DataFrame from a variety of Python-native data formats.

  • get_or_create

    Gets an existing Session or creates a new one with the configured settings.

  • sql

    Execute a read-only SQL query against one or more DataFrames using named placeholders.

  • stop

    Stops the session and closes all connections.

  • table

    Returns the specified table as a DataFrame.

Attributes:

  • catalog (Catalog) –

    Interface for catalog operations on the Session.

  • read (DataFrameReader) –

    Returns a DataFrameReader that can be used to read data in as a DataFrame.

catalog property

catalog: Catalog

Interface for catalog operations on the Session.

read property

read: DataFrameReader

Returns a DataFrameReader that can be used to read data in as a DataFrame.

Returns:

  • DataFrameReader ( DataFrameReader ) –

    A reader interface to read data into DataFrame

Raises:

  • RuntimeError

    If the session has been stopped

create_dataframe

create_dataframe(data: DataLike) -> DataFrame

Create a DataFrame from a variety of Python-native data formats.

Parameters:

  • data (DataLike) –

    Input data. Must be one of: - Polars DataFrame - Pandas DataFrame - dict of column_name -> list of values - list of dicts (each dict representing a row) - pyarrow Table

Returns:

Raises:

  • ValueError

    If the input format is unsupported or inconsistent with provided column names.

Create from Polars DataFrame
import polars as pl
df = pl.DataFrame({"col1": [1, 2], "col2": ["a", "b"]})
session.create_dataframe(df)
Create from Pandas DataFrame
import pandas as pd
df = pd.DataFrame({"col1": [1, 2], "col2": ["a", "b"]})
session.create_dataframe(df)
Create from dictionary
session.create_dataframe({"col1": [1, 2], "col2": ["a", "b"]})
Create from list of dictionaries
session.create_dataframe([
    {"col1": 1, "col2": "a"},
    {"col1": 2, "col2": "b"}
])
Create from pyarrow Table
import pyarrow as pa
table = pa.Table.from_pydict({"col1": [1, 2], "col2": ["a", "b"]})
session.create_dataframe(table)
Source code in src/fenic/api/session/session.py
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
def create_dataframe(
    self,
    data: DataLike,
) -> DataFrame:
    """Create a DataFrame from a variety of Python-native data formats.

    Args:
        data: Input data. Must be one of:
            - Polars DataFrame
            - Pandas DataFrame
            - dict of column_name -> list of values
            - list of dicts (each dict representing a row)
            - pyarrow Table

    Returns:
        A new DataFrame instance

    Raises:
        ValueError: If the input format is unsupported or inconsistent with provided column names.

    Example: Create from Polars DataFrame
        ```python
        import polars as pl
        df = pl.DataFrame({"col1": [1, 2], "col2": ["a", "b"]})
        session.create_dataframe(df)
        ```

    Example: Create from Pandas DataFrame
        ```python
        import pandas as pd
        df = pd.DataFrame({"col1": [1, 2], "col2": ["a", "b"]})
        session.create_dataframe(df)
        ```

    Example: Create from dictionary
        ```python
        session.create_dataframe({"col1": [1, 2], "col2": ["a", "b"]})
        ```

    Example: Create from list of dictionaries
        ```python
        session.create_dataframe([
            {"col1": 1, "col2": "a"},
            {"col1": 2, "col2": "b"}
        ])
        ```

    Example: Create from pyarrow Table
        ```python
        import pyarrow as pa
        table = pa.Table.from_pydict({"col1": [1, 2], "col2": ["a", "b"]})
        session.create_dataframe(table)
        ```
    """
    try:
        if isinstance(data, pl.DataFrame):
            pl_df = data
        elif isinstance(data, pd.DataFrame):
            pl_df = pl.from_pandas(data)
        elif isinstance(data, dict):
            pl_df = pl.DataFrame(data)
        elif isinstance(data, list):
            if not data:
                raise ValidationError(
                    "Cannot create DataFrame from empty list. Provide a non-empty list of dictionaries, lists, or other supported data types."
                )

            if not isinstance(data[0], dict):
                raise ValidationError(
                    "Cannot create DataFrame from list of non-dict values. Provide a list of dictionaries."
                )
            pl_df = pl.DataFrame(data)
        elif isinstance(data, pa.Table):
            pl_df = pl.from_arrow(data)

        else:
            raise ValidationError(
                f"Unsupported data type: {type(data)}. Supported types are: Polars DataFrame, Pandas DataFrame, dict, or list."
            )

    except ValidationError:
        raise
    except Exception as e:
        raise PlanError(f"Failed to create DataFrame from {data}") from e

    return DataFrame._from_logical_plan(
        InMemorySource(pl_df, self._session_state)
    )

get_or_create classmethod

get_or_create(config: SessionConfig) -> Session

Gets an existing Session or creates a new one with the configured settings.

Returns:

  • Session

    A Session instance configured with the provided settings

Source code in src/fenic/api/session/session.py
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
@classmethod
def get_or_create(
    cls,
    config: SessionConfig,
) -> Session:
    """Gets an existing Session or creates a new one with the configured settings.

    Returns:
        A Session instance configured with the provided settings
    """
    if config.cloud:
        from fenic._backends.cloud.manager import CloudSessionManager

        cloud_session_manager = CloudSessionManager()
        if not cloud_session_manager.initialized:
            session_manager_dependencies = (
                CloudSessionManager.create_global_session_dependencies()
            )
            cloud_session_manager.configure(session_manager_dependencies)
        future = asyncio.run_coroutine_threadsafe(
            cloud_session_manager.get_or_create_session_state(config),
            cloud_session_manager._asyncio_loop,
        )
        cloud_session_state = future.result()
        return Session._create_cloud_session(cloud_session_state)

    local_session_state: LocalSessionState = LocalSessionManager().get_or_create_session_state(config._to_resolved_config())
    return Session._create_local_session(local_session_state)

sql

sql(query: str, /, **tables: DataFrame) -> DataFrame

Execute a read-only SQL query against one or more DataFrames using named placeholders.

This allows you to execute ad hoc SQL queries using familiar syntax when it's more convenient than the DataFrame API. Placeholders in the SQL string (e.g. {df}) should correspond to keyword arguments (e.g. df=my_dataframe).

For supported SQL syntax and functions, refer to the DuckDB SQL documentation: https://duckdb.org/docs/sql/introduction.

Parameters:

  • query (str) –

    A SQL query string with placeholders like {df}

  • **tables (DataFrame, default: {} ) –

    Keyword arguments mapping placeholder names to DataFrames

Returns:

  • DataFrame

    A lazy DataFrame representing the result of the SQL query

Raises:

  • ValidationError

    If a placeholder is used in the query but not passed as a keyword argument

Simple join between two DataFrames
df1 = session.create_dataframe({"id": [1, 2]})
df2 = session.create_dataframe({"id": [2, 3]})
result = session.sql(
    "SELECT * FROM {df1} JOIN {df2} USING (id)",
    df1=df1,
    df2=df2
)
Complex query with multiple DataFrames
users = session.create_dataframe({"user_id": [1, 2], "name": ["Alice", "Bob"]})
orders = session.create_dataframe({"order_id": [1, 2], "user_id": [1, 2]})
products = session.create_dataframe({"product_id": [1, 2], "name": ["Widget", "Gadget"]})

result = session.sql("""
    SELECT u.name, p.name as product
    FROM {users} u
    JOIN {orders} o ON u.user_id = o.user_id
    JOIN {products} p ON o.product_id = p.product_id
""", users=users, orders=orders, products=products)
Source code in src/fenic/api/session/session.py
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
def sql(self, query: str, /, **tables: DataFrame) -> DataFrame:
    """Execute a read-only SQL query against one or more DataFrames using named placeholders.

    This allows you to execute ad hoc SQL queries using familiar syntax when it's more convenient than the DataFrame API.
    Placeholders in the SQL string (e.g. `{df}`) should correspond to keyword arguments (e.g. `df=my_dataframe`).

    For supported SQL syntax and functions, refer to the DuckDB SQL documentation:
    https://duckdb.org/docs/sql/introduction.

    Args:
        query: A SQL query string with placeholders like `{df}`
        **tables: Keyword arguments mapping placeholder names to DataFrames

    Returns:
        A lazy DataFrame representing the result of the SQL query

    Raises:
        ValidationError: If a placeholder is used in the query but not passed
            as a keyword argument

    Example: Simple join between two DataFrames
        ```python
        df1 = session.create_dataframe({"id": [1, 2]})
        df2 = session.create_dataframe({"id": [2, 3]})
        result = session.sql(
            "SELECT * FROM {df1} JOIN {df2} USING (id)",
            df1=df1,
            df2=df2
        )
        ```

    Example: Complex query with multiple DataFrames
        ```python
        users = session.create_dataframe({"user_id": [1, 2], "name": ["Alice", "Bob"]})
        orders = session.create_dataframe({"order_id": [1, 2], "user_id": [1, 2]})
        products = session.create_dataframe({"product_id": [1, 2], "name": ["Widget", "Gadget"]})

        result = session.sql(\"\"\"
            SELECT u.name, p.name as product
            FROM {users} u
            JOIN {orders} o ON u.user_id = o.user_id
            JOIN {products} p ON o.product_id = p.product_id
        \"\"\", users=users, orders=orders, products=products)
        ```
    """
    query = query.strip()
    if not query:
        raise ValidationError("SQL query must not be empty.")

    placeholders = set(SQL_PLACEHOLDER_RE.findall(query))
    missing = placeholders - tables.keys()
    if missing:
        raise ValidationError(
            f"Missing DataFrames for placeholders in SQL query: {', '.join(sorted(missing))}. "
            f"Make sure to pass them as keyword arguments, e.g., sql(..., {next(iter(missing))}=df)."
        )

    logical_plans = []
    template_names = []
    for name, table in tables.items():
        if name in placeholders:
            template_names.append(name)
            logical_plans.append(table._logical_plan)

    return DataFrame._from_logical_plan(
        SQL(logical_plans, template_names, query, self._session_state),
    )

stop

stop()

Stops the session and closes all connections.

Source code in src/fenic/api/session/session.py
311
312
313
def stop(self):
    """Stops the session and closes all connections."""
    self._session_state.stop()

table

table(table_name: str) -> DataFrame

Returns the specified table as a DataFrame.

Parameters:

  • table_name (str) –

    Name of the table

Returns:

Raises:

  • ValueError

    If the table does not exist

Load an existing table
df = session.table("my_table")
Source code in src/fenic/api/session/session.py
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
def table(self, table_name: str) -> DataFrame:
    """Returns the specified table as a DataFrame.

    Args:
        table_name: Name of the table

    Returns:
        Table as a DataFrame

    Raises:
        ValueError: If the table does not exist

    Example: Load an existing table
        ```python
        df = session.table("my_table")
        ```
    """
    if not self._session_state.catalog.does_table_exist(table_name):
        raise ValueError(f"Table {table_name} does not exist")
    return DataFrame._from_logical_plan(
        TableSource(table_name, self._session_state),
    )

SessionConfig

Bases: BaseModel

Configuration for a user session.

This class defines the complete configuration for a user session, including application settings, model configurations, and optional cloud settings. It serves as the central configuration object for all language model operations.

Attributes:

  • app_name (str) –

    Name of the application using this session. Defaults to "default_app".

  • db_path (Optional[Path]) –

    Optional path to a local database file for persistent storage.

  • semantic (SemanticConfig) –

    Configuration for semantic models (required).

  • cloud (Optional[CloudConfig]) –

    Optional configuration for cloud execution.

Note

The semantic configuration is required as it defines the language models that will be used for processing. The cloud configuration is optional and only needed for distributed processing.

StructField

A field in a StructType. Fields are nullable.

Attributes:

  • name (str) –

    The name of the field.

  • data_type (DataType) –

    The data type of the field.

StructType

Bases: DataType

A type representing a struct (record) with named fields.

Attributes:

  • fields

    List of field definitions.

Create a struct with name and age fields
StructType([
    StructField("name", StringType),
    StructField("age", IntegerType),
])

TranscriptType

Bases: _StringBackedType

Represents a string containing a transcript in a specific format.

array

array(*args: Union[ColumnOrName, List[ColumnOrName], Tuple[ColumnOrName, ...]]) -> Column

Creates a new array column from multiple input columns.

Parameters:

  • *args (Union[ColumnOrName, List[ColumnOrName], Tuple[ColumnOrName, ...]], default: () ) –

    Columns or column names to combine into an array. Can be:

    • Individual arguments
    • Lists of columns/column names
    • Tuples of columns/column names

Returns:

  • Column

    A Column expression representing an array containing values from the input columns

Raises:

  • TypeError

    If any argument is not a Column, string, or collection of Columns/strings

Source code in src/fenic/api/functions/builtin.py
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
@validate_call(config=ConfigDict(strict=True, arbitrary_types_allowed=True))
def array(
    *args: Union[ColumnOrName, List[ColumnOrName], Tuple[ColumnOrName, ...]]
) -> Column:
    """Creates a new array column from multiple input columns.

    Args:
        *args: Columns or column names to combine into an array. Can be:

            - Individual arguments
            - Lists of columns/column names
            - Tuples of columns/column names

    Returns:
        A Column expression representing an array containing values from the input columns

    Raises:
        TypeError: If any argument is not a Column, string, or collection of
            Columns/strings
    """
    flattened_args = []
    for arg in args:
        if isinstance(arg, (list, tuple)):
            flattened_args.extend(arg)
        else:
            flattened_args.append(arg)

    expr_columns = [Column._from_col_or_name(c)._logical_expr for c in flattened_args]

    return Column._from_logical_expr(ArrayExpr(expr_columns))

array_agg

array_agg(column: ColumnOrName) -> Column

Alias for collect_list().

Source code in src/fenic/api/functions/builtin.py
161
162
163
164
@validate_call(config=ConfigDict(strict=True, arbitrary_types_allowed=True))
def array_agg(column: ColumnOrName) -> Column:
    """Alias for collect_list()."""
    return collect_list(column)

array_contains

array_contains(column: ColumnOrName, value: Union[str, int, float, bool, Column]) -> Column

Checks if array column contains a specific value.

This function returns True if the array in the specified column contains the given value, and False otherwise. Returns False if the array is None.

Parameters:

  • column (ColumnOrName) –

    Column or column name containing the arrays to check.

  • value (Union[str, int, float, bool, Column]) –

    Value to search for in the arrays. Can be: - A literal value (string, number, boolean) - A Column expression

Returns:

  • Column

    A boolean Column expression (True if value is found, False otherwise).

Raises:

  • TypeError

    If value type is incompatible with the array element type.

  • TypeError

    If the column does not contain array data.

Check for values in arrays
# Check if 'python' exists in arrays in the 'tags' column
df.select(array_contains("tags", "python"))

# Check using a value from another column
df.select(array_contains("tags", col("search_term")))
Source code in src/fenic/api/functions/builtin.py
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
@validate_call(config=ConfigDict(strict=True, arbitrary_types_allowed=True))
def array_contains(
    column: ColumnOrName, value: Union[str, int, float, bool, Column]
) -> Column:
    """Checks if array column contains a specific value.

    This function returns True if the array in the specified column contains the given value,
    and False otherwise. Returns False if the array is None.

    Args:
        column: Column or column name containing the arrays to check.

        value: Value to search for in the arrays. Can be:
            - A literal value (string, number, boolean)
            - A Column expression

    Returns:
        A boolean Column expression (True if value is found, False otherwise).

    Raises:
        TypeError: If value type is incompatible with the array element type.
        TypeError: If the column does not contain array data.

    Example: Check for values in arrays
        ```python
        # Check if 'python' exists in arrays in the 'tags' column
        df.select(array_contains("tags", "python"))

        # Check using a value from another column
        df.select(array_contains("tags", col("search_term")))
        ```
    """
    value_column = None
    if isinstance(value, Column):
        value_column = value
    else:
        value_column = lit(value)
    return Column._from_logical_expr(
        ArrayContainsExpr(
            Column._from_col_or_name(column)._logical_expr, value_column._logical_expr
        )
    )

array_size

array_size(column: ColumnOrName) -> Column

Returns the number of elements in an array column.

This function computes the length of arrays stored in the specified column. Returns None for None arrays.

Parameters:

  • column (ColumnOrName) –

    Column or column name containing arrays whose length to compute.

Returns:

  • Column

    A Column expression representing the array length.

Raises:

  • TypeError

    If the column does not contain array data.

Get array sizes
# Get the size of arrays in 'tags' column
df.select(array_size("tags"))

# Use with column reference
df.select(array_size(col("tags")))
Source code in src/fenic/api/functions/builtin.py
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
@validate_call(config=ConfigDict(strict=True, arbitrary_types_allowed=True))
def array_size(column: ColumnOrName) -> Column:
    """Returns the number of elements in an array column.

    This function computes the length of arrays stored in the specified column.
    Returns None for None arrays.

    Args:
        column: Column or column name containing arrays whose length to compute.

    Returns:
        A Column expression representing the array length.

    Raises:
        TypeError: If the column does not contain array data.

    Example: Get array sizes
        ```python
        # Get the size of arrays in 'tags' column
        df.select(array_size("tags"))

        # Use with column reference
        df.select(array_size(col("tags")))
        ```
    """
    return Column._from_logical_expr(
        ArrayLengthExpr(Column._from_col_or_name(column)._logical_expr)
    )

asc

asc(column: ColumnOrName) -> Column

Creates a Column expression representing an ascending sort order.

Parameters:

  • column (ColumnOrName) –

    The column to apply the ascending ordering to.

Returns:

  • Column

    A Column expression representing the column and the ascending sort order.

Raises:

  • ValueError

    If the type of the column cannot be inferred.

  • Error

    If this expression is passed to a dataframe operation besides sort() and order_by().

Source code in src/fenic/api/functions/builtin.py
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
@validate_call(config=ConfigDict(strict=True, arbitrary_types_allowed=True))
def asc(column: ColumnOrName) -> Column:
    """Creates a Column expression representing an ascending sort order.

    Args:
        column: The column to apply the ascending ordering to.

    Returns:
        A Column expression representing the column and the ascending sort order.

    Raises:
        ValueError: If the type of the column cannot be inferred.
        Error: If this expression is passed to a dataframe operation besides sort() and order_by().
    """
    return Column._from_col_or_name(column).asc()

asc_nulls_first

asc_nulls_first(column: ColumnOrName) -> Column

Creates a Column expression representing an ascending sort order with nulls first.

Parameters:

  • column (ColumnOrName) –

    The column to apply the ascending ordering to.

Returns:

  • Column

    A Column expression representing the column and the ascending sort order with nulls first.

Raises:

  • ValueError

    If the type of the column cannot be inferred.

  • Error

    If this expression is passed to a dataframe operation besides sort() and order_by().

Source code in src/fenic/api/functions/builtin.py
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
@validate_call(config=ConfigDict(strict=True, arbitrary_types_allowed=True))
def asc_nulls_first(column: ColumnOrName) -> Column:
    """Creates a Column expression representing an ascending sort order with nulls first.

    Args:
        column: The column to apply the ascending ordering to.

    Returns:
        A Column expression representing the column and the ascending sort order with nulls first.

    Raises:
        ValueError: If the type of the column cannot be inferred.
        Error: If this expression is passed to a dataframe operation besides sort() and order_by().
    """
    return Column._from_col_or_name(column).asc_nulls_first()

asc_nulls_last

asc_nulls_last(column: ColumnOrName) -> Column

Creates a Column expression representing an ascending sort order with nulls last.

Parameters:

  • column (ColumnOrName) –

    The column to apply the ascending ordering to.

Returns:

  • Column

    A Column expression representing the column and the ascending sort order with nulls last.

Raises:

  • ValueError

    If the type of the column cannot be inferred.

  • Error

    If this expression is passed to a dataframe operation besides sort() and order_by().

Source code in src/fenic/api/functions/builtin.py
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
@validate_call(config=ConfigDict(strict=True, arbitrary_types_allowed=True))
def asc_nulls_last(column: ColumnOrName) -> Column:
    """Creates a Column expression representing an ascending sort order with nulls last.

    Args:
        column: The column to apply the ascending ordering to.

    Returns:
        A Column expression representing the column and the ascending sort order with nulls last.

    Raises:
        ValueError: If the type of the column cannot be inferred.
        Error: If this expression is passed to a dataframe operation besides sort() and order_by().
    """
    return Column._from_col_or_name(column).asc_nulls_last()

avg

avg(column: ColumnOrName) -> Column

Aggregate function: returns the average (mean) of all values in the specified column.

Parameters:

  • column (ColumnOrName) –

    Column or column name to compute the average of

Returns:

  • Column

    A Column expression representing the average aggregation

Raises:

  • TypeError

    If column is not a Column or string

Source code in src/fenic/api/functions/builtin.py
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
@validate_call(config=ConfigDict(strict=True, arbitrary_types_allowed=True))
def avg(column: ColumnOrName) -> Column:
    """Aggregate function: returns the average (mean) of all values in the specified column.

    Args:
        column: Column or column name to compute the average of

    Returns:
        A Column expression representing the average aggregation

    Raises:
        TypeError: If column is not a Column or string
    """
    return Column._from_logical_expr(
        AvgExpr(Column._from_col_or_name(column)._logical_expr)
    )

coalesce

coalesce(*cols: ColumnOrName) -> Column

Returns the first non-null value from the given columns for each row.

This function mimics the behavior of SQL's COALESCE function. It evaluates the input columns in order and returns the first non-null value encountered. If all values are null, returns null.

Parameters:

  • *cols (ColumnOrName, default: () ) –

    Column expressions or column names to evaluate. Can be:

    • Individual arguments
    • Lists of columns/column names
    • Tuples of columns/column names

Returns:

  • Column

    A Column expression containing the first non-null value from the input columns.

Raises:

  • ValueError

    If no columns are provided.

Basic coalesce usage
# Basic usage
df.select(coalesce("col1", "col2", "col3"))

# With nested collections
df.select(coalesce(["col1", "col2"], "col3"))
Source code in src/fenic/api/functions/builtin.py
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
@validate_call(config=ConfigDict(strict=True, arbitrary_types_allowed=True))
def coalesce(*cols: ColumnOrName) -> Column:
    """Returns the first non-null value from the given columns for each row.

    This function mimics the behavior of SQL's COALESCE function. It evaluates the input columns
    in order and returns the first non-null value encountered. If all values are null, returns null.

    Args:
        *cols: Column expressions or column names to evaluate. Can be:

            - Individual arguments
            - Lists of columns/column names
            - Tuples of columns/column names

    Returns:
        A Column expression containing the first non-null value from the input columns.

    Raises:
        ValueError: If no columns are provided.

    Example: Basic coalesce usage
        ```python
        # Basic usage
        df.select(coalesce("col1", "col2", "col3"))

        # With nested collections
        df.select(coalesce(["col1", "col2"], "col3"))
        ```
    """
    if not cols:
        raise ValueError("At least one column must be provided to coalesce method")

    flattened_args = []
    for arg in cols:
        if isinstance(arg, (list, tuple)):
            flattened_args.extend(arg)
        else:
            flattened_args.append(arg)

    flattened_exprs = [
        Column._from_col_or_name(c)._logical_expr for c in flattened_args
    ]
    return Column._from_logical_expr(CoalesceExpr(flattened_exprs))

col

col(col_name: str) -> Column

Creates a Column expression referencing a column in the DataFrame.

Parameters:

  • col_name (str) –

    Name of the column to reference

Returns:

  • Column

    A Column expression for the specified column

Raises:

  • TypeError

    If colName is not a string

Source code in src/fenic/api/functions/core.py
16
17
18
19
20
21
22
23
24
25
26
27
28
29
@validate_call(config=ConfigDict(strict=True))
def col(col_name: str) -> Column:
    """Creates a Column expression referencing a column in the DataFrame.

    Args:
        col_name: Name of the column to reference

    Returns:
        A Column expression for the specified column

    Raises:
        TypeError: If colName is not a string
    """
    return Column._from_column_name(col_name)

collect_list

collect_list(column: ColumnOrName) -> Column

Aggregate function: collects all values from the specified column into a list.

Parameters:

  • column (ColumnOrName) –

    Column or column name to collect values from

Returns:

  • Column

    A Column expression representing the list aggregation

Raises:

  • TypeError

    If column is not a Column or string

Source code in src/fenic/api/functions/builtin.py
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
@validate_call(config=ConfigDict(strict=True, arbitrary_types_allowed=True))
def collect_list(column: ColumnOrName) -> Column:
    """Aggregate function: collects all values from the specified column into a list.

    Args:
        column: Column or column name to collect values from

    Returns:
        A Column expression representing the list aggregation

    Raises:
        TypeError: If column is not a Column or string
    """
    return Column._from_logical_expr(
        ListExpr(Column._from_col_or_name(column)._logical_expr)
    )

configure_logging

configure_logging(log_level: int = logging.INFO, log_format: str = '%(asctime)s [%(name)s] %(levelname)s: %(message)s', log_stream: Optional[TextIO] = None) -> None

Configure logging for the library and root logger in interactive environments.

This function ensures that logs from the library's modules appear in output by setting up a default handler on the root logger only if one does not already exist. This is especially useful in notebooks, scripts, or REPLs where logging is often unset. It configures the root logger and sets the library's top-level logger to propagate logs to the root.

If the root logger has no handlers, this function sets up a default configuration and silences noisy dependencies like 'openai' and 'httpx'.

In more complex applications or when integrating with existing logging configurations, you might prefer to manage logging setup externally. In such cases, you may not need to call this function.

Source code in src/fenic/logging.py
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
def configure_logging(
    log_level: int = logging.INFO,
    log_format: str = "%(asctime)s [%(name)s] %(levelname)s: %(message)s",
    log_stream: Optional[TextIO] = None,
) -> None:
    """Configure logging for the library and root logger in interactive environments.

    This function ensures that logs from the library's modules appear in output by
    setting up a default handler on the root logger *only if* one does not already
    exist. This is especially useful in notebooks, scripts, or REPLs where logging
    is often unset. It configures the root logger and sets the library's top-level
    logger to propagate logs to the root.

    If the root logger has no handlers, this function sets up a default configuration
    and silences noisy dependencies like 'openai' and 'httpx'.

    In more complex applications or when integrating with existing logging
    configurations, you might prefer to manage logging setup externally. In such
    cases, you may not need to call this function.
    """
    stream = log_stream or sys.stderr
    formatter = logging.Formatter(log_format)
    handler = logging.StreamHandler(stream)
    handler.setFormatter(formatter)

    root_logger = logging.getLogger()
    if not root_logger.hasHandlers():
        # Set up root logger only if not already configured
        root_logger.setLevel(log_level)
        root_logger.addHandler(handler)

        # Silence noisy dependencies
        for noisy_logger_name in ("openai", "httpx"):
            noisy_logger = logging.getLogger(noisy_logger_name)
            noisy_logger.setLevel(logging.ERROR)

    # Set the library logger level and enable propagation
    library_root_name = __name__.split(".")[0]
    library_logger = logging.getLogger(library_root_name)
    library_logger.setLevel(log_level)
    library_logger.propagate = True

count

count(column: ColumnOrName) -> Column

Aggregate function: returns the count of non-null values in the specified column.

Parameters:

  • column (ColumnOrName) –

    Column or column name to count values in

Returns:

  • Column

    A Column expression representing the count aggregation

Raises:

  • TypeError

    If column is not a Column or string

Source code in src/fenic/api/functions/builtin.py
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
@validate_call(config=ConfigDict(strict=True, arbitrary_types_allowed=True))
def count(column: ColumnOrName) -> Column:
    """Aggregate function: returns the count of non-null values in the specified column.

    Args:
        column: Column or column name to count values in

    Returns:
        A Column expression representing the count aggregation

    Raises:
        TypeError: If column is not a Column or string
    """
    if isinstance(column, str) and column == "*":
        return Column._from_logical_expr(CountExpr(lit("*")._logical_expr))
    return Column._from_logical_expr(
        CountExpr(Column._from_col_or_name(column)._logical_expr)
    )

desc

desc(column: ColumnOrName) -> Column

Creates a Column expression representing a descending sort order.

Parameters:

  • column (ColumnOrName) –

    The column to apply the descending ordering to.

Returns:

  • Column

    A Column expression representing the column and the descending sort order.

Raises:

  • ValueError

    If the type of the column cannot be inferred.

  • Error

    If this expression is passed to a dataframe operation besides sort() and order_by().

Source code in src/fenic/api/functions/builtin.py
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
@validate_call(config=ConfigDict(strict=True, arbitrary_types_allowed=True))
def desc(column: ColumnOrName) -> Column:
    """Creates a Column expression representing a descending sort order.

    Args:
        column: The column to apply the descending ordering to.

    Returns:
        A Column expression representing the column and the descending sort order.

    Raises:
        ValueError: If the type of the column cannot be inferred.
        Error: If this expression is passed to a dataframe operation besides sort() and order_by().
    """
    return Column._from_col_or_name(column).desc()

desc_nulls_first

desc_nulls_first(column: ColumnOrName) -> Column

Creates a Column expression representing a descending sort order with nulls first.

Parameters:

  • column (ColumnOrName) –

    The column to apply the descending ordering to.

Returns:

  • Column

    A Column expression representing the column and the descending sort order with nulls first.

Raises:

  • ValueError

    If the type of the column cannot be inferred.

  • Error

    If this expression is passed to a dataframe operation besides sort() and order_by().

Source code in src/fenic/api/functions/builtin.py
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
@validate_call(config=ConfigDict(strict=True, arbitrary_types_allowed=True))
def desc_nulls_first(column: ColumnOrName) -> Column:
    """Creates a Column expression representing a descending sort order with nulls first.

    Args:
        column: The column to apply the descending ordering to.

    Returns:
        A Column expression representing the column and the descending sort order with nulls first.

    Raises:
        ValueError: If the type of the column cannot be inferred.
        Error: If this expression is passed to a dataframe operation besides sort() and order_by().
    """
    return Column._from_col_or_name(column).desc_nulls_first()

desc_nulls_last

desc_nulls_last(column: ColumnOrName) -> Column

Creates a Column expression representing a descending sort order with nulls last.

Parameters:

  • column (ColumnOrName) –

    The column to apply the descending ordering to.

Returns:

  • Column

    A Column expression representing the column and the descending sort order with nulls last.

Raises:

  • ValueError

    If the type of the column cannot be inferred.

  • Error

    If this expression is passed to a dataframe operation besides sort() and order_by().

Source code in src/fenic/api/functions/builtin.py
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
@validate_call(config=ConfigDict(strict=True, arbitrary_types_allowed=True))
def desc_nulls_last(column: ColumnOrName) -> Column:
    """Creates a Column expression representing a descending sort order with nulls last.

    Args:
        column: The column to apply the descending ordering to.

    Returns:
        A Column expression representing the column and the descending sort order with nulls last.

    Raises:
        ValueError: If the type of the column cannot be inferred.
        Error: If this expression is passed to a dataframe operation besides sort() and order_by().
    """
    return Column._from_col_or_name(column).desc_nulls_last()

first

first(column: ColumnOrName) -> Column

Aggregate function: returns the first non-null value in the specified column.

Typically used in aggregations to select the first observed value per group.

Parameters:

  • column (ColumnOrName) –

    Column or column name.

Returns:

  • Column

    Column expression for the first value.

Source code in src/fenic/api/functions/builtin.py
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
@validate_call(config=ConfigDict(strict=True, arbitrary_types_allowed=True))
def first(column: ColumnOrName) -> Column:
    """Aggregate function: returns the first non-null value in the specified column.

    Typically used in aggregations to select the first observed value per group.

    Args:
        column: Column or column name.

    Returns:
        Column expression for the first value.
    """
    return Column._from_logical_expr(
        FirstExpr(Column._from_col_or_name(column)._logical_expr)
    )

lit

lit(value: Any) -> Column

Creates a Column expression representing a literal value.

Parameters:

  • value (Any) –

    The literal value to create a column for

Returns:

  • Column

    A Column expression representing the literal value

Raises:

  • ValueError

    If the type of the value cannot be inferred

Source code in src/fenic/api/functions/core.py
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
def lit(value: Any) -> Column:
    """Creates a Column expression representing a literal value.

    Args:
        value: The literal value to create a column for

    Returns:
        A Column expression representing the literal value

    Raises:
        ValueError: If the type of the value cannot be inferred
    """
    try:
        inferred_type = infer_dtype_from_pyobj(value)
    except TypeInferenceError as e:
        raise ValidationError(f"`lit` failed to infer type for value `{value}`") from e
    literal_expr = LiteralExpr(value, inferred_type)
    return Column._from_logical_expr(literal_expr)

max

max(column: ColumnOrName) -> Column

Aggregate function: returns the maximum value in the specified column.

Parameters:

  • column (ColumnOrName) –

    Column or column name to compute the maximum of

Returns:

  • Column

    A Column expression representing the maximum aggregation

Raises:

  • TypeError

    If column is not a Column or string

Source code in src/fenic/api/functions/builtin.py
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
@validate_call(config=ConfigDict(strict=True, arbitrary_types_allowed=True))
def max(column: ColumnOrName) -> Column:
    """Aggregate function: returns the maximum value in the specified column.

    Args:
        column: Column or column name to compute the maximum of

    Returns:
        A Column expression representing the maximum aggregation

    Raises:
        TypeError: If column is not a Column or string
    """
    return Column._from_logical_expr(
        MaxExpr(Column._from_col_or_name(column)._logical_expr)
    )

mean

mean(column: ColumnOrName) -> Column

Aggregate function: returns the mean (average) of all values in the specified column.

Alias for avg().

Parameters:

  • column (ColumnOrName) –

    Column or column name to compute the mean of

Returns:

  • Column

    A Column expression representing the mean aggregation

Raises:

  • TypeError

    If column is not a Column or string

Source code in src/fenic/api/functions/builtin.py
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
@validate_call(config=ConfigDict(strict=True, arbitrary_types_allowed=True))
def mean(column: ColumnOrName) -> Column:
    """Aggregate function: returns the mean (average) of all values in the specified column.

    Alias for avg().

    Args:
        column: Column or column name to compute the mean of

    Returns:
        A Column expression representing the mean aggregation

    Raises:
        TypeError: If column is not a Column or string
    """
    return Column._from_logical_expr(
        AvgExpr(Column._from_col_or_name(column)._logical_expr)
    )

min

min(column: ColumnOrName) -> Column

Aggregate function: returns the minimum value in the specified column.

Parameters:

  • column (ColumnOrName) –

    Column or column name to compute the minimum of

Returns:

  • Column

    A Column expression representing the minimum aggregation

Raises:

  • TypeError

    If column is not a Column or string

Source code in src/fenic/api/functions/builtin.py
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
@validate_call(config=ConfigDict(strict=True, arbitrary_types_allowed=True))
def min(column: ColumnOrName) -> Column:
    """Aggregate function: returns the minimum value in the specified column.

    Args:
        column: Column or column name to compute the minimum of

    Returns:
        A Column expression representing the minimum aggregation

    Raises:
        TypeError: If column is not a Column or string
    """
    return Column._from_logical_expr(
        MinExpr(Column._from_col_or_name(column)._logical_expr)
    )

stddev

stddev(column: ColumnOrName) -> Column

Aggregate function: returns the sample standard deviation of the specified column.

Parameters:

  • column (ColumnOrName) –

    Column or column name.

Returns:

  • Column

    Column expression for sample standard deviation.

Source code in src/fenic/api/functions/builtin.py
182
183
184
185
186
187
188
189
190
191
192
193
194
@validate_call(config=ConfigDict(strict=True, arbitrary_types_allowed=True))
def stddev(column: ColumnOrName) -> Column:
    """Aggregate function: returns the sample standard deviation of the specified column.

    Args:
        column: Column or column name.

    Returns:
        Column expression for sample standard deviation.
    """
    return Column._from_logical_expr(
        StdDevExpr(Column._from_col_or_name(column)._logical_expr)
    )

struct

struct(*args: Union[ColumnOrName, List[ColumnOrName], Tuple[ColumnOrName, ...]]) -> Column

Creates a new struct column from multiple input columns.

Parameters:

  • *args (Union[ColumnOrName, List[ColumnOrName], Tuple[ColumnOrName, ...]], default: () ) –

    Columns or column names to combine into a struct. Can be:

    • Individual arguments
    • Lists of columns/column names
    • Tuples of columns/column names

Returns:

  • Column

    A Column expression representing a struct containing the input columns

Raises:

  • TypeError

    If any argument is not a Column, string, or collection of Columns/strings

Source code in src/fenic/api/functions/builtin.py
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
@validate_call(config=ConfigDict(strict=True, arbitrary_types_allowed=True))
def struct(
    *args: Union[ColumnOrName, List[ColumnOrName], Tuple[ColumnOrName, ...]]
) -> Column:
    """Creates a new struct column from multiple input columns.

    Args:
        *args: Columns or column names to combine into a struct. Can be:

            - Individual arguments
            - Lists of columns/column names
            - Tuples of columns/column names

    Returns:
        A Column expression representing a struct containing the input columns

    Raises:
        TypeError: If any argument is not a Column, string, or collection of
            Columns/strings
    """
    flattened_args = []
    for arg in args:
        if isinstance(arg, (list, tuple)):
            flattened_args.extend(arg)
        else:
            flattened_args.append(arg)

    expr_columns = [Column._from_col_or_name(c)._logical_expr for c in flattened_args]

    return Column._from_logical_expr(StructExpr(expr_columns))

sum

sum(column: ColumnOrName) -> Column

Aggregate function: returns the sum of all values in the specified column.

Parameters:

  • column (ColumnOrName) –

    Column or column name to compute the sum of

Returns:

  • Column

    A Column expression representing the sum aggregation

Raises:

  • TypeError

    If column is not a Column or string

Source code in src/fenic/api/functions/builtin.py
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
@validate_call(config=ConfigDict(strict=True, arbitrary_types_allowed=True))
def sum(column: ColumnOrName) -> Column:
    """Aggregate function: returns the sum of all values in the specified column.

    Args:
        column: Column or column name to compute the sum of

    Returns:
        A Column expression representing the sum aggregation

    Raises:
        TypeError: If column is not a Column or string
    """
    return Column._from_logical_expr(
        SumExpr(Column._from_col_or_name(column)._logical_expr)
    )

udf

udf(f: Optional[Callable] = None, *, return_type: DataType)

A decorator or function for creating user-defined functions (UDFs) that can be applied to DataFrame rows.

When applied, UDFs will: - Access StructType columns as Python dictionaries (dict[str, Any]). - Access ArrayType columns as Python lists (list[Any]). - Access primitive types (e.g., int, float, str) as their respective Python types.

Parameters:

  • f (Optional[Callable], default: None ) –

    Python function to convert to UDF

  • return_type (DataType) –

    Expected return type of the UDF. Required parameter.

UDF with primitive types
# UDF with primitive types
@udf(return_type=IntegerType)
def add_one(x: int):
    return x + 1

# Or
add_one = udf(lambda x: x + 1, return_type=IntegerType)
UDF with nested types
# UDF with nested types
@udf(return_type=StructType([StructField("value1", IntegerType), StructField("value2", IntegerType)]))
def example_udf(x: dict[str, int], y: list[int]):
    return {
        "value1": x["value1"] + x["value2"] + y[0],
        "value2": x["value1"] + x["value2"] + y[1],
    }
Source code in src/fenic/api/functions/builtin.py
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
@validate_call(config=ConfigDict(strict=True, arbitrary_types_allowed=True))
def udf(f: Optional[Callable] = None, *, return_type: DataType):
    """A decorator or function for creating user-defined functions (UDFs) that can be applied to DataFrame rows.

    When applied, UDFs will:
    - Access `StructType` columns as Python dictionaries (`dict[str, Any]`).
    - Access `ArrayType` columns as Python lists (`list[Any]`).
    - Access primitive types (e.g., `int`, `float`, `str`) as their respective Python types.

    Args:
        f: Python function to convert to UDF

        return_type: Expected return type of the UDF. Required parameter.

    Example: UDF with primitive types
        ```python
        # UDF with primitive types
        @udf(return_type=IntegerType)
        def add_one(x: int):
            return x + 1

        # Or
        add_one = udf(lambda x: x + 1, return_type=IntegerType)
        ```

    Example: UDF with nested types
        ```python
        # UDF with nested types
        @udf(return_type=StructType([StructField("value1", IntegerType), StructField("value2", IntegerType)]))
        def example_udf(x: dict[str, int], y: list[int]):
            return {
                "value1": x["value1"] + x["value2"] + y[0],
                "value2": x["value1"] + x["value2"] + y[1],
            }
        ```
    """

    def _create_udf(func: Callable) -> Callable:
        @wraps(func)
        def _udf_wrapper(*cols: ColumnOrName) -> Column:
            col_exprs = [Column._from_col_or_name(c)._logical_expr for c in cols]
            return Column._from_logical_expr(UDFExpr(func, col_exprs, return_type))

        return _udf_wrapper

    if f is not None:
        return _create_udf(f)
    return _create_udf

when

when(condition: Column, value: Column) -> Column

Evaluates a condition and returns a value if true.

This function is used to create conditional expressions. If Column.otherwise() is not invoked, None is returned for unmatched conditions.

Parameters:

  • condition (Column) –

    A boolean Column expression to evaluate.

  • value (Column) –

    A Column expression to return if the condition is true.

Returns:

  • Column

    A Column expression that evaluates the condition and returns the specified value when true,

  • Column

    and None otherwise.

Raises:

  • TypeError

    If the condition is not a boolean Column expression.

Basic conditional expression
# Basic usage
df.select(when(col("age") > 18, lit("adult")))

# With otherwise
df.select(when(col("age") > 18, lit("adult")).otherwise(lit("minor")))
Source code in src/fenic/api/functions/builtin.py
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
@validate_call(config=ConfigDict(strict=True, arbitrary_types_allowed=True))
def when(condition: Column, value: Column) -> Column:
    """Evaluates a condition and returns a value if true.

    This function is used to create conditional expressions. If Column.otherwise() is not invoked,
    None is returned for unmatched conditions.

    Args:
        condition: A boolean Column expression to evaluate.

        value: A Column expression to return if the condition is true.

    Returns:
        A Column expression that evaluates the condition and returns the specified value when true,
        and None otherwise.

    Raises:
        TypeError: If the condition is not a boolean Column expression.

    Example: Basic conditional expression
        ```python
        # Basic usage
        df.select(when(col("age") > 18, lit("adult")))

        # With otherwise
        df.select(when(col("age") > 18, lit("adult")).otherwise(lit("minor")))
        ```
    """
    return Column._from_logical_expr(
        WhenExpr(None, condition._logical_expr, value._logical_expr)
    )