fenic.core.types.schema
Schema definitions for DataFrame structures.
This module provides classes for defining and working with DataFrame schemas. It includes ColumnField for individual column definitions and Schema for complete DataFrame structure definitions.
Classes:
-
ColumnField–Represents a typed column in a DataFrame schema.
-
DatasetMetadata–Metadata for a dataset (table or view).
-
Schema–Represents the schema of a DataFrame.
ColumnField
Represents a typed column in a DataFrame schema.
A ColumnField defines the structure of a single column by specifying its name and data type. This is used as a building block for DataFrame schemas.
Attributes:
-
name(str) –The name of the column.
-
data_type(DataType) –The data type of the column, as a DataType instance.
DatasetMetadata
Metadata for a dataset (table or view).
Attributes:
-
schema(Schema) –The schema of the dataset.
-
description(Optional[str]) –The natural language description of the dataset's contents.
Schema
Represents the schema of a DataFrame.
A Schema defines the structure of a DataFrame by specifying an ordered collection of column fields. Each column field defines the name and data type of a column in the DataFrame.
Attributes:
-
column_fields(List[ColumnField]) –An ordered list of ColumnField objects that define the structure of the DataFrame.
Methods:
-
column_names–Get a list of all column names in the schema.
column_names
column_names() -> List[str]
Get a list of all column names in the schema.
Returns:
-
List[str]–A list of strings containing the names of all columns in the schema.
Source code in src/fenic/core/types/schema.py
117 118 119 120 121 122 123 | |